Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Best Practices in Establishing Business Case for Implementing Blockchain Solution in Aerospace

2022-03-08
2022-01-0002
The aircraft asset life cycle processes are rapidly being digitalized. Many novel technologies enabled processes of recording these electronic transactions are being emerged. One such technology for recording electronic transactions securely is Blockchain, defined as distributed ledger technologies which includes enterprise blockchain. Blockchain is not widely used in the aerospace industry due to lack of technical understanding and questions about its benefits. Assessment and establishment of business case for implementing blockchain based solution is needed. The aerospace industry is very conservative when it comes to technology adoption and hence it is difficult to change legacy processes. Additionally, the industry is very fragmented. The technology is advancing at a faster rate and applies across geographies under various regulatory oversight which makes blockchain based solution implementation challenging.
Journal Article

Digital Data Standards in Aircraft Asset Lifecycle: Current Status and Future Needs

2021-03-02
2021-01-0035
The aerospace ecosystem is a complex system of systems comprising of many stakeholders in exchanging technical, design, development, certification, operational, and maintenance data across the different lifecycle stages of an aircraft from concept, engineering, manufacturing, operations, and maintenance to its disposal. Many standards have been developed to standardize and improve the effectiveness, efficiency, and security of the data transfer processes in the aerospace ecosystem. There are still challenges in data transfer due to the lack of standards in certain areas and lack of awareness and implementation of some standards. G-31 standards committee of SAE International has conducted a study on the available digital data standards in aircraft asset life cycle to understand the current and future landscapes of the needed digital data standards and identify gaps. This technical paper presents the study conducted by the G-31 technical committee.
Technical Paper

Efficient Assembly Integration and Test (EAIT) Moves Theory to Practice at a System Level to Effect Lean Outcomes on the Shop Floor

2009-11-10
2009-01-3169
This paper will describe the Efficient Assembly Integration and Test (EAIT) system level project operated as a partnership among Boeing business units, universities, and suppliers. The focus is on the successful implementation and sharing of technology solutions to develop a model based, multi-product pulsed line factory of the future. The EAIT philosophy presented in this paper focuses on a collaborative environment that is tightly woven with the Lean Initiatives at Boeing's satellite development center. The prototype is comprised of a platform that includes a wireless instrumentation system, rapid bonding materials and virtual test of guidance hardware there are examples of collaborative development in collaboration with suppliers. Wireless tools and information systems are also being developed across the Boeing Company. Virtual reality development will include university partners in the US and India.
Journal Article

Columbus Thermal Hydraulic Operations with US Payloads

2009-07-12
2009-01-2555
After launch and activation activities, the Columbus module started its operational life on February 2008 providing resources to the internal and external experiments. In March 2008 two US Payloads were successfully installed into Columbus Module: Microgravity Sciences Glovebox (MSG) and a US payload of the Express rack family, Express Rack 3, carrying the European Modular Cultivation System (EMCS) experiment. They were delivered to the European laboratory from the US laboratory and followed few months later by similar racks; Human Research Facility 1 (HRF1) and HRF2. The following paper provides an overview of US Payloads, giving their main features and experiments run inside Columbus on year 2008. Flight issues, mainly on the hydraulic side are also discussed. Engineering evaluations released to the flight control team, telemetry data, and relevant mathematical models predictions are described providing a background material for the adopted work-around solutions.
Technical Paper

Columbus to Human Research Facility Hydraulic Compatibility Test: Analysis and Results

2005-07-11
2005-01-3119
ESA and NASA agencies agreed to run an interface compatibility test at the EADS facility between the Columbus flight module and a duplicate ground unit of a currently on-orbit US International Standard Payload Rack, the Human Research Facility (HRF) Flight Prototype Rack (FPR). The purpose of the test was to demonstrate the capability to run US payloads inside the European ISS module Columbus. One of the critical aspects to be verified to ensure suitable operations of the two systems was the combined performance of the hydraulic controls resident in the HRF and Columbus coolant loops. A hydraulic model of the HRF FPR was developed and combined with the Columbus Active Thermal Control System (ATCS) model. Several coupled thermal-hydraulic test cases were then performed, preceded by mathematical analysis, required to predict safe test conditions and to optimize the Columbus valve configurations.
Technical Paper

Integral: 2.5 Y ears on Orbit - Thermal P erformance and Lesson Learnt

2005-07-11
2005-01-2989
The INTEGRAL (International Gamma Ray Astrophysics Laboratory) program is an ESA observatory scientific satellite to be used for gamma ray astronomy, It was successfully launched on the 17th of October 2002 with a Proton launcher from Baikonour Cosmodrome and after a dedicated Commissioning Phase it was ready to start its scientific mission. After 2 years the first lifetime goal (nominal lifetime) was reached and it entered the extended lifetime (3 additional years) Alenia Spazio, who had the role of Prime Contractor, was fully responsible of the Thermal Control of the satellite. During 2.5 years the satellite was carefully monitored and the thermal control design mounted on it has been capable to meet all the thermal requirements, providing the optimal thermal environment.
Technical Paper

The I/R Thermal Balance Test of Radarsat-2: Approach to Verification / Correlation

2005-01-11
2005-01-2988
Radarsat-2 is a commercial Synthetic Aperture Radar satellite for earth observation. [1] The general stowed configuration is shown in Figure 1. In nominal operation mode, once deployed, the large SAR polarimetric Antenna (i.e. able to transmit and receive both horizontal and vertical polarisations) is inclined of about -29.8° versus the nominal direction of geodetic local surface normal (Right Looking mode). When is necessary to take images of South Pole, nominally not visible from SAR, the S/C must be rotated to the +29.8° position (Left Looking mode). During the Radarsat-2 thermal testing the S/C (PFM) was subjected to a first thermal balance/thermal cycling test in vacuum with simulation of external heat fluxes by means of I/R lamps and additional test heaters. A very complex thermal test configuration was required in order to simulate the continually varying thermal environment imposed by the S/C nominal sun-synchronous orbit and attitude.
Technical Paper

Future Directions Relative to NDE of Composite Structures

2004-09-21
2004-01-2817
One of the key elements of increasing the affordability of major weapons systems is reducing costs associated with manufacturing. Nondestructive evaluation (NDE) is a critical element of the manufacturing process and one that cannot be compromised. A key goal associated with NDE research and development is to help reduce the cost associated with quality assurance. In relation to composite structures, this is being approached from several directions, two of which will be discussed. The approach most frequently used for inspection of composite parts is to pull the parts out of the manufacturing cells and route them to a centralized quality assurance area for inspection. This approach leads to accumulation of non-recurring costs for tooling/fixturing to support the inspection and significant additions to production flow time. An alternative would be to develop nondestructive evaluation processes that can be performed in the manufacturing cells.
Technical Paper

ALTAN, a New Tool for Spacecraft Thermal Simulation

2004-07-19
2004-01-2317
ALTAN (ALenia Thermal ANalyser) is a tool developed in Alenia Spazio, for the thermal simulation of satellites. Distinctive features of ALTAN are the description of the system in terms of thermal objects that can be considered as high level primitives, the accurate modelling of the energy sources (planets and sun) and of the optical properties, the integration in a single tool of the steps of radiative, conductive and thermal calculations and of the post-process of the results. An example of ALTAN application is given for Bepi-Colombo mission to Mercury, in particular the modelling of the highly variable planet temperature and the directional optical properties of the planet surface.
Technical Paper

Requirements and Potential for Enhanced EVA Information Interfaces

2003-07-07
2003-01-2413
NASA has long recognized the advantages of providing improved information interfaces to EVA astronauts and has pursued this goal through a number of development programs over the past decade. None of these activities or parallel efforts in industry and academia has so far resulted in the development of an operational system to replace or augment the current extravehicular mobility unit (EMU) Display and Controls Module (DCM) display and cuff checklist. Recent advances in display, communications, and information processing technologies offer exciting new opportunities for EVA information interfaces that can better serve the needs of a variety of NASA missions. Hamilton Sundstrand Space Systems International (HSSSI) has been collaborating with Simon Fraser University and others on the NASA Haughton Mars Project and with researchers at the Massachusetts Institute of Technology (MIT), Boeing, and Symbol Technologies in investigating these possibilities.
Technical Paper

An Overview of the Thermal Verification & Flight Data of Integral and Artemis Satellites

2003-07-07
2003-01-2465
The INTEGRAL (International Gamma Ray Astrophysics Laboratory) program is an ESA observatory scientific satellite to be used for gamma ray astronomy, while ARTEMIS (Advanced Data Relay and Technology Mission) is an ESA program to be used for data relay and technology demonstration. ARTEMIS was launched on the 12th of July 2001 with an Ariane V launcher from CSG, after successful completion of the System Environmental test campaign at ESTEC including Solar Simulation Thermal Balance tests on PFM (1998). INTEGRAL has been successfully launched on the 17th of October 2002 with a Proton launcher from Baikonour Cosmodrome, after completion of the System Environmental test campaign at ESTEC including Solar Simulation Thermal Balance tests on STM (1998) and PFM (2002).
Technical Paper

Food Service and Food System Logistics at the South Pole: Lessons for a Lunar/Martian Planetary Surface Mission

2003-07-07
2003-01-2365
Three distinct food system paradigms have been envisioned for long-term space missions. The Skylab, Mir and ISS food systems were based on single-serving prepackaged foods, ready to rehydrate and heat. Bioregenerative food systems, derived from crops grown and processed at the planetary station, have been studied at JSC and KSC. The US Antarctic Program’s Amundsen-Scott South Pole Base uses the third paradigm: bulk packaged food ingredients delivered once a year and used to prepare meals on the station. The packaged food ingredients are supplemented with limited amounts of fresh foods received occasionally during the Antarctic summer, trace amounts of herb and salad crops from the hydroponic garden, and some prepackaged ready to eat foods, so the Pole system is actually a hybrid system; however, it is worth studying as a bulk packaged food system because of the preponderance of bulk packaged food ingredients used.
Technical Paper

ESM Analysis of COTS Laundry Systems for Space Missions

2002-07-15
2002-01-2518
Clothing supply has been examined for historical, current, and planned missions. For STS, crew clothing is stowed on the orbiter and returned to JSC for refurbishment. On Mir, clothing was supplied and then disposed of on Progress for incineration on re-entry. For ISS, the Russian laundry and 75% of the US laundry is placed on Progress for destructive re-entry. The rest of the US laundry is stowed in mesh bags and returned to earth in the Multi Purpose Logistics Module (MPLM) or in the STS middeck. For previous missions, clothing was supplied and thrown away. Supplying clothing without washing dirty clothing will be costly for long-duration missions. An on-board laundry system may reduce overall mission costs, as shown in previous, less accurate, metric studies. Some design and development of flight hardware laundry systems has been completed, such as the SBIR Phase I and Phase II study performed by UMPQUA Research Company for JSC in 1993.
Technical Paper

Advanced Technology in Future Metal Cutting for Airframe Manufacturing

2002-04-16
2002-01-1515
Metal cutting is a substantial constituent of airframe manufacturing. During the past several decades, it has evolved significantly. However, most of the changes and improvement were initiated by the machine tool industry and cutting tool industry, thus these new technologies is generally applicable to all industries. Among them, few are developed especially for the airframe manufacture. Therefore, the potential of high efficiency could not be fully explored. In order to deal with severe competition, the aerospace industry needs improvement with a focus on achieving low cost through high efficiency. The direction of research and development in parts machining must comply with lean manufacturing principles and must enhance competitiveness. This article is being forwarded to discuss the trend of new developments in the metal cutting of airframe parts. Primary driving forces of this movement, such as managers, scientists, and engineers, have provided significant influence to this trend.
Technical Paper

The Problem: Estimating a Complex Project Duration

2002-04-16
2002-01-1540
Schedule/Cost Risk, politics, competition for capital dollars are all factors affecting our project decisions and choices. Not understanding the key elements of a project that will contribute to schedule and cost risk will invariably result in overruns that can quickly absorb the returns expected from the investment. This paper attempts to provide the project team with a model that considers some risk factor elements to assist with the selection of project alternatives and more intelligent schedule/cost estimating.
Technical Paper

The Thermal Environmental Control (TEC) of the Fluid Science Laboratory (FSL): a combined (Water/Air) thermal design solution for a Columbus Active Rack

2001-07-09
2001-01-2374
The Fluid Science Laboratory (FSL) is an advanced multi-user facility for conducting fluid physics research in microgravity conditions. It will be installed in the Columbus module of the International Space Station (ISS) scheduled for launch in 2004. FSL is being developed by a European industrial team, led by ALENIA SPAZIO of Italy, and managed by the European Space Agency (ESA). The FSL Thermal Environment Control (TEC) establishes a defined thermal environment during the complete experiment duration to keep the experiment and the supporting subsystems within their thermal requirements. The TEC is further subdivided into three sections. The Air Cooling Section is based on the Avionics Air Assembly (AAA) which generates air streams inside the Facility to collect, by forced convection, the waste heat from the electronics belonging to the various Subsystems. The Secondary Water Loop (SWL) cooling Section provides the cooled water to the Experiment Container.
Technical Paper

Thermal Design Solutions for Space Exposed P/L’s and Pointing Systems on the ISS Express Pallet

2001-07-09
2001-01-2431
The use of the truss of the International Space Station (ISS) for the accommodation of several experiments, in the frame of the “Early opportunity for ISS utilization”, will have a lot of advantages such as the possibility of human or robotics intervention, the recovery of the experiment at the end of its life, visual inspection of the items and cost reduction with respect to an installation on a dedicated satellite. However, from the user point of view, the ISS generates a great number of disturbances and severe environmental conditions for the experiments providing constraints and affecting the performances in different areas (thermal, mechanical, and avionics). The present paper will discuss the thermal aspects (disturbances, constraints and performances) concerning three different projects, developed by Alenia Spazio Turin plant, that will be mounted on the truss of the ISS: Hexapod, Coarse Pointing Device (CPD) and Sky Polarization Observatory (SPOrt).
Technical Paper

Burr Prevention and Minimization for the Aerospace Industry

1999-06-05
1999-01-2292
Burr research is undeniably highly complex. In order to advance understanding of the process involved several techniques are being implemented. First a detailed and thorough examination of the burr forming process is undertaken. The technique is difficult, intricate and time consuming, but delivers a large amount of vital physical data. This information is then used in the construction of empirical models and, in some case lead to development of FEM models. Finally using the model as a template, related burr formation problems that have not been physically examined can be simulated and the results used to control process planning resulting in the reduction of burr formation. We highlight this process by discussing current areas of research being followed at the University of California in collaboration with Boeing and the Consortium on Deburring and Edge Finishing (CODEF).
Technical Paper

THE EVOLUTIONARY DEVELOPMENT AND CURRENT STATUS OF THE AUGMENTOR WING CONCEPT

1970-02-01
700812
A review is made of previously reported status of the augmentor wing concept, including test work of de Havilland Aircraft of Canada and the NASA Ames Research Center. More recent NASA data which formed the basis for proceeding with a flight research vehicle program on the Buffalo CV-7A are discussed. This background is used to show potential application to a turbofan-powered production airplane concept whose highly integrated propulsion and aerodynamics show promise for a very quiet STOL. Proposed future augmentor wing development programs are also briefly discussed.
X