Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Assessment of Side Impact Simulation Using ABAQUS/Explicit

In order to protect occupants from the risk of serious injury in event of side impact, passenger vehicles are designed to fulfil specific legislative and consumer impact test requirements. These are generally different for each of the major markets of the world. The tests use different configurations and percentile dummies (anthropomorphic test devices). Aside from the problem of finding an optimal design, the reliable evaluation of the robustness, i.e. the sensitivity of unavoidable scatter of design variables due to the structural response, is becoming increasingly important. For this purpose simulation is a well established tool in the development process in the automotive industry. The integration of FE-dummies and restraint systems in side impact simulations enables the study of the effect of dummy loading. ABAQUS/Explicit is a promising new software package for gaining more accuracy in crashworthiness and occupant protection simulations.
Technical Paper

Numerical Simulation of Human Kinematics and Injuries in Side Crash Scenarios

Optimizing protection for side impact in vehicle design requires valid information about occupant behavior under lateral loading. For this reason a comparison of numerical models of dummies and human body in side impact scenarios is shown to estimate the benefits of using numerical human models in future safety design. First a well-known sled test set up was simulated to compare the two devices in a defined surrounding. After looking at the kinematics, the loads, accelerations and injury values of the occupants were derived and compared to each other. Second the occupant models were positioned in a vehicle model to compare their behavior in a more complex loading case, such as an EuroNCAP Barrier Test. Focus of this investigation was the injury mechanism occurring in the human model. The Behavior of the Dummy and H-Model is comparable and shows similar responses in a global view.