Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Further Investigations on the Flow Around a Rotating, Isolated Wheel with Detailed Tread Pattern

2015-04-14
2015-01-1554
Efforts in aerodynamic optimization of road vehicles have been steadily increasing in recent years, mainly focusing on the reduction of aerodynamic drag. Of a car's total drag, wheels and wheel houses account for approx. 25 percent. Consequently, the flow around automotive wheels has lately been investigated intensively. Previously, the authors studied a treaded, deformable, isolated full-scale tire rotating in contact with the ground in the wind tunnel and using the Lattice-Boltzmann solver Exa PowerFLOW. It was shown that applying a common numerical setup, with velocity boundary condition prescribed on the tread, significant errors were introduced in the simulation. The contact patch separation was exaggerated and the flow field from wind tunnel measurements could not be reproduced. This investigation carries on the work by examining sensitivities and new approaches in the setup.
Technical Paper

Aerodynamic Performance Assessment of BMW Validation Models using Computational Fluid Dynamics

2012-04-16
2012-01-0297
Aerodynamic performance assessment of automotive shapes is typically performed in wind tunnels. However, with the rapid progress in computer hardware technology and the maturity and accuracy of Computational Fluid Dynamics (CFD) software packages, evaluation of the production-level automotive shapes using a digital process has become a reality. As the time to market shrinks, automakers are adopting a digital design process for vehicle development. This has elevated the accuracy requirements on the flow simulation software, so that it can be used effectively in the production environment. Evaluation of aerodynamic performance covers prediction of the aerodynamic coefficients such as drag, lift, side force and also lift balance between the front and rear axle. Drag prediction accuracy is important for meeting fuel efficiency targets, prediction of front and rear lifts as well as side force and yawing moment are crucial for high speed handling.
Journal Article

A New Approach to Analyzing Cooling and Interference Drag

2010-04-12
2010-01-0286
This paper presents a new approach to analyzing and developing low-drag cooling systems. A relation is derived which describes cooling drag by a number of contributions. Interference drag clearly can be identified as one of them. Cooling system parameters can be assigned to different terms of the relation, so that differences due to parameter variations of the individual drag contributions can be estimated. In order to predict the interference-drag dependency on the outlet location and the local outlet mass flow, an extensive study on a standard BMW sedan has been carried out, both experimentally and by CFD. The results show the importance of providing consistent outflow conditions which take into account the outlet location and flow direction, in order to minimize cooling drag.
Technical Paper

Experimental Analysis of the Underbody Pressure Distribution of a Series Vehicle on the Road and in the Wind Tunnel

2008-04-14
2008-01-0802
Underbody aerodynamics has become increasingly important over the last three decades because of its vital contribution to improving a vehicle's overall performance. This was the motivation for the research conducted by BMW Aerodynamics, concerning the determination of the overall pressure distribution on the underbody of a series-production vehicle. Static pressure measurements have been taken under various test conditions. Real on-road tests were carried out as well as wind tunnel experiments under application of different road simulation techniques. The analyzed vehicle configurations include wheel rim-tire and body modifications. The results presented include surface pressure data, drag and lift coefficients, ride heights, pitch and roll angles. The acquired data is used to examine the underbody flow topology and determine how the diverse attempts to represent the real on-road conditions affect its pressure distribution.
Technical Paper

Needs and Possibilities for the Correction of Drag and Lift Wheel Forces which have been Derived by Integrating its Static Pressure Distribution

2006-12-05
2006-01-3623
Knowing the wheel forces on a vehicle under various circumstances and configurations is essential for its aerodynamic development. This becomes crucial when dealing with a racing car. This was the driving force for the initial research conducted in the BMW Aerodynamics Department [1] concerning the aerodynamic forces of an isolated 1:2 racing wheel. The latter were determined for various arrangements with the use of a system equipped with pressure transducers distributed on the wheel surface. While the pressure wheel is adequate for revealing flow structures surrounding it as well as highlighting its physics, it is nevertheless insufficient for the prediction of the wheel forces with high accuracy. As will be shown, this is mainly the consequence of the absent contribution of skin friction, the mathematical method engaged in post–processing and the restricted number of pressure transducers.
Technical Paper

The European Union Mg-Engine Project - Generation of Material Property Data for Four Die Cast Mg-Alloys

2006-04-03
2006-01-0070
A specific objective of the European Mg-Engine project is to qualify at least two die cast Mg alloys with improved high temperature properties, in addition to satisfactory corrosion resistance, castability and costs. This paper discusses the selection criteria for high temperature alloys leading to four candidate alloys, AJ52A, AJ62A, AE44 and AE35. Tensile-, creep- and fatigue testing of standard die cast test specimens at different temperatures and conditions have led to a very large amount of material property data. Numerous examples are given to underline the potential for these alloys in high temperature automotive applications. The subsequent use of the basic property data in material models for design of automotive components is illustrated.
Technical Paper

Premium Clear Coat at BMW Group

2006-04-03
2006-01-0751
Automotive clear coats have a broad field of requirements to fulfill, e.g. weathering stability, stone chipping, chemical resistance, scratch resistance, and have to show a brilliant surface appearance. Beside this, the paint and repair process for high volume car manufacturing must be fulfilled with respect to costs and the environment. From the development point of view of a car manufacture interactions between these properties and the critical way of understanding and describing the value for the customer is shown. The conclusion of this scenario and a detailed benchmark study of different new clear coats guide to the development of the ‘Next generation’ of powder clear coats.
Technical Paper

Wash off Resistant 1-Component Structural Adhesives

2006-04-03
2006-01-0975
The application of crash durable structural adhesives in modern cars design, to improve the driving durability, the overall vehicle stiffness, the crash resistance and to make real light weight constructions feasible is significantly gaining in importance. 1-component systems are already introduced in the market and used in automotive industries. Usually the use of these bonds in automotive industries is limited by a relatively low wash off resistance in the pre-treatment tanks of the paint shop. If no additional actions are taken, there is a severe risk of wash off of the adhesives up to the partial loss in functionality. Respectively contamination of the pre-treatment tanks and aftereffects damage the surface of the coated cars. To avoid wash off a thermal process (oven) to pre-gel the adhesive in the flanges of the Body-In-White (BIW)- bodies before entering the pre-treatment utility is necessary. This is a save but cost intensive solution.
Technical Paper

An Advanced Process for Virtual Evaluation of the Dimensional Resistance of Interior Parts

2006-04-03
2006-01-1475
The importance of the automotive interior as a characteristic feature in the competition for the goodwill of the customer has increased significantly in recent years. Whilst there are established, more or less efficient CAE processes for the solution of problems in the areas of occupant safety and service strength, until now the implementation of CAE in themes such as dimensional stability, warpage and corrugation1 of plastic parts has been little investigated. The developmental support in this field is predominantly carried out by means of hardware tests. Real plastic components alter their form as a result of internal forces often during the first weeks following production. The process, known as “creep”, can continue over an extended period of time and is exacerbated by high ambient temperatures and additional external loads stemming from installation and post assembly position.
X