Refine Your Search

Topic

Author

Search Results

Technical Paper

Obstacle Avoidance Using Model Predictive Control: An Implementation and Validation Study Using Scaled Vehicles

2020-04-14
2020-01-0109
Over the last decade, tremendous amount of research and progress has been made towards developing smart technologies for autonomous vehicles such as adaptive cruise control, lane keeping assist, lane following algorithms, and decision-making algorithms. One of the fundamental objectives for the development of such technologies is to enable autonomous vehicles with the capability to avoid obstacles and maintain safety. Automobiles are real-world dynamical systems - possessing inertia, operating at varying speeds, with finite accelerations/decelerations during operations. Deployment of autonomy in vehicles increases in complexity multi-fold especially when high DOF vehicle models need to be considered for robust control. Model Predictive Control (MPC) is a powerful tool that is used extensively to control the behavior of complex, dynamic systems. As a model-based approach, the fidelity of the model and selection of model-parameters plays a role in ultimate performance.
Technical Paper

Simulation-Based Evaluation of Spark-Assisted Compression Ignition Control for Production

2020-04-14
2020-01-1145
Spark-assisted compression ignition (SACI) leverages flame propagation to trigger autoignition in a controlled manner. The autoignition event is highly sensitive to several parameters, and thus, achieving SACI in production demands a high tolerance to variations in conditions. Limited research is available to quantify the combustion response of SACI to these variations. A simulation study is performed to establish trends, limits, and control implications for SACI combustion over a wide range of conditions. The operating space was evaluated with a detailed chemical kinetics model. Key findings were synthesized from these results and applied to a 1-D engine model. This model identified performance characteristics and potential actuator positions for a production-viable SACI engine. This study shows charge preparation is critical and can extend the low-load limit by strengthening flame propagation and the high-load limit by reducing ringing intensity.
Technical Paper

Capability-Driven Adaptive Task Distribution for Flexible Multi-Human-Multi-Robot (MH-MR) Manufacturing Systems

2020-04-14
2020-01-1303
Collaborative robots are more and more used in smart manufacturing because of their capability to work beside and collaborate with human workers. With the deployment of these robots, manufacturing tasks are more inclined to be accomplished by multiple humans and multiple robots (MH-MR) through teaming effort. In such MH-MR collaboration scenarios, the task distribution among the multiple humans and multiple robots is very critical to efficiency. It is also more challenging due to the heterogeneity of different agents. Existing approaches in task distribution among multiple agents mostly consider humans with assumed or known capabilities. However human capabilities are always changing due to various factors, which may lead to suboptimal efficiency. Although some researches have studied several human factors in manufacturing and applied them to adjust the robot task and behaviors.
Technical Paper

Teen Drivers’ Understanding of Instrument Cluster Indicators and Warning Lights from a Gasoline, a Hybrid and an Electric Vehicle

2020-04-14
2020-01-1199
In the U.S., the teenage driving population is at the highest risk of being involved in a crash. Teens often demonstrate poor vehicle control skills and poor ability to identify hazards, thus proper understanding of automotive indicators and warnings may be even more critical for this population. This research evaluates teen drivers’, between 15 to 17 years of age, understanding of symbols from vehicles featuring advanced driving assistant systems and multiple powertrain configurations. Teen drivers’ (N=72) understanding of automotive symbols was compared to three other groups with specialized driving experience and technical knowledge: automotive engineering graduate students (N=48), driver rehabilitation specialists (N=16), and performance driving instructors (N=15). Participants matched 42 symbols to their descriptions and then selected the five symbols they considered most important.
Technical Paper

Evaluating Drivers’ Preferences and Understanding of Powertrain and Advanced Driver Assistant Systems Symbols for Current and Future Vehicles

2020-04-14
2020-01-1203
With the dramatic increase in vehicle technology, the availability of a wide range of powertrains, and the development of advanced driver assistant systems (ADAS), instrument cluster interfaces have become more complex, increasing the demand on drivers. Understanding the needs and preferences of a diverse group of drivers is essential for the development of digital instrument cluster interfaces that improve driver’s understanding of critical information about the vehicle. This study investigated drivers’ understanding and preferences related to powertrain and ADAS symbols presented on instrument clusters. Participants answered questions that evaluated nine symbol’s comprehension, familiarity, and helpfulness. Then, participants were presented with information from the owner’s manual for each symbol and responded if the information changed their understanding of the symbol.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Technical Paper

A Preliminary Method of Delivering Engineering Design Heuristics

2020-04-14
2020-01-0741
This paper argues the importance of engineering heuristics and introduces an educational data-driven tool to help novice engineers develop their engineering heuristics more effectively. The main objective in engineering practice is to identify opportunities for improvement and apply methods to effect change. Engineers do so by applying ‘how to’ knowledge to make decisions and take actions. This ‘how to’ knowledge is encoded in engineering heuristics. In this paper, we describe a tool that aims to provide heuristic knowledge to users by giving them insight into heuristics applied by experts in similar situations. A repository of automotive data is transformed into a tool with powerful search and data visualization functionalities. The tool can be used to educate novice automotive engineers alongside the current resource intensive practices of teaching engineering heuristics through social methods such as an apprenticeship.
Technical Paper

A Review of Spark-Assisted Compression Ignition (SACI) Research in the Context of Realizing Production Control Strategies

2019-09-09
2019-24-0027
This paper seeks to identify key input parameters needed to achieve a production-viable control strategy for spark-assisted compression ignition (SACI) engines. SACI is a combustion strategy that uses a spark plug to initiate a deflagration flame that generates sufficient ignition energy to trigger autoignition in the remaining charge. The flame propagation phase limits the rate of cylinder pressure rise, while autoignition rapidly completes combustion. High dilution within the autoignited charge is generally required to maintain reaction rates feasible for production. However, this high dilution may not be reliably ignited by the spark plug. These competing constraints demand novel mixture preparation strategies for SACI to be feasible in production. SACI with charge stratification has demonstrated sufficiently stable flame propagation to reliably trigger autoignition across much of the engine operating map.
Technical Paper

Modeling and Learning of Object Placing Tasks from Human Demonstrations in Smart Manufacturing

2019-04-02
2019-01-0700
In this paper, we present a framework for the robot to learn how to place objects to a workpiece by learning from humans in smart manufacturing. In the proposed framework, the rational scene dictionary (RSD) corresponding to the keyframes of task (KFT) are used to identify the general object-action-location relationships. The Generalized Voronoi Diagrams (GVD) based contour is used to determine the relative position and orientation between the object and the corresponding workpiece at the final state. In the learning phase, we keep tracking the image segments in the human demonstration. For the moment when a spatial relation of some segments are changed in a discontinuous way, the state changes are recorded by the RSD. KFT is abstracted after traversing and searching in RSD, while the relative position and orientation of the object and the corresponding mount are presented by GVD-based contours for the keyframes.
Technical Paper

An Immersive Vehicle-in-the-Loop VR Platform for Evaluating Human-to-Autonomous Vehicle Interactions

2019-04-02
2019-01-0143
The deployment of autonomous vehicles in real-world scenarios requires thorough testing to ensure sufficient safety levels. Driving simulators have proven to be useful testbeds for assisted and autonomous driving functionalities but may fail to capture all the nuances of real-world conditions. In this paper, we present a snapshot of the design and evaluation using a Cooperative Adaptive Cruise Control application of virtual reality platform currently in development at our institution. The platform is designed so to: allow for incorporating live real-world driving data into the simulation, enabling Vehicle-in-the-Loop testing of autonomous driving behaviors and providing us with a useful mean to evaluate the human factor in the autonomous vehicle context.
Technical Paper

Prediction of Human Actions in Assembly Process by a Spatial-Temporal End-to-End Learning Model

2019-04-02
2019-01-0509
It’s important to predict human actions in the industry assembly process. Foreseeing future actions before they happened is an essential part for flexible human-robot collaboration and crucial to safety issues. Vision-based human action prediction from videos provides intuitive and adequate knowledge for many complex applications. This problem can be interpreted as deducing the next action of people from a short video clip. The history information needs to be considered to learn these relations among time steps for predicting the future steps. However, it is difficult to extract the history information and use it to infer the future situation with traditional methods. In this scenario, a model is needed to handle the spatial and temporal details stored in the past human motions and construct the future action based on limited accessible human demonstrations.
Technical Paper

Real-Time Reinforcement Learning Optimized Energy Management for a 48V Mild Hybrid Electric Vehicle

2019-04-02
2019-01-1208
Energy management of hybrid vehicle has been a widely researched area. Strategies like dynamic programming (DP), equivalent consumption minimization strategy (ECMS), Pontryagin’s minimum principle (PMP) are well analyzed in literatures. However, the adaptive optimization work is still lacking, especially for reinforcement learning (RL). In this paper, Q-learning, as one of the model-free reinforcement learning method, is implemented in a mid-size 48V mild parallel hybrid electric vehicle (HEV) framework to optimize the fuel economy. Different from other RL work in HEV, this paper only considers vehicle speed and vehicle torque demand as the Q-learning states. SOC is not included for the reduction of state dimension. This paper focuses on showing that the EMS with non-SOC state vectors are capable of controlling the vehicle and outputting satisfactory results. Electric motor torque demand is chosen as action.
Technical Paper

Use of Cellphones as Alternative Driver Inputs in Passenger Vehicles

2019-04-02
2019-01-1239
Automotive drive-by-wire systems have enabled greater mobility options for individuals with physical disabilities. To further expand the driving paradigm, a need exists to consider an alternative vehicle steering mechanism to meet specific needs and constraints. In this study, a cellphone steering controller was investigated using a fixed-base driving simulator. The cellphone incorporated the direction control of the vehicle through roll motion, as well as the brake and throttle functionality through pitch motion, a design that can assist disabled drivers by excluding extensive arm and leg movements. Human test subjects evaluated the cellphone with conventional vehicle control strategy through a series of roadway maneuvers. Specifically, two distinctive driving situations were studied: a) obstacle avoidance test, and b) city road traveling test. A conventional steering wheel with self-centering force feedback tuning was used for all the driving events for comparison.
Technical Paper

Trust-Based Control and Scheduling for UGV Platoon under Cyber Attacks

2019-04-02
2019-01-1077
Unmanned ground vehicles (UGVs) may encounter difficulties accommodating environmental uncertainties and system degradations during harsh conditions. However, human experience and onboard intelligence can may help mitigate such cases. Unfortunately, human operators have cognition limits when directly supervising multiple UGVs. Ideally, an automated decision aid can be designed that empowers the human operator to supervise the UGVs. In this paper, we consider a connected UGV platoon under cyber attacks that may disrupt safety and degrade performance. An observer-based resilient control strategy is designed to mitigate the effects of vehicle-to-vehicle (V2V) cyber attacks. In addition, each UGV generates both internal and external evaluations based on the platoons performance metrics. A cloud-based trust-based information management system collects these evaluations to detect abnormal UGV platoon behaviors.
Journal Article

A Systems Approach in Developing an Ultralightweight Outside Mounted Rearview Mirror Using Discontinuous Fiber Reinforced Thermoplastics

2019-04-02
2019-01-1124
Fuel efficiency improvement in automobiles has been a topic of great interest over the past few years, especially with the introduction of the new CAFE 2025 standards. Although there are multiple ways of improving the fuel efficiency of an automobile, lightweighting is one of the most common approaches taken by many automotive manufacturers. Lightweighting is even more significant in electric vehicles as it directly affects the range of the vehicle. Amidst this context of lightweighting, the use of composite materials as alternatives to metals has been proven in the past to help achieve substantial weight reduction. The focus of using composites for weight reduction has however been typically limited to major structural components, such as BiW and closures, due to high material costs. Secondary structural components which contribute approximately 30% of the vehicle weight are usually neglected by these weight reduction studies.
Technical Paper

A Voice and Pointing Gesture Interaction System for On-Route Update of Autonomous Vehicles’ Path

2019-04-02
2019-01-0679
This paper describes the development and simulation of a voice and pointing gesture interaction system for on-route update of autonomous vehicles’ path. The objective of this research is to provide users of autonomous vehicles a human vehicle interaction mode that enables them to make and communicate spontaneous decisions to the autonomous car, modifying its pre-defined autonomous route in real-time. For example, similar to giving directions to a taxi driver, a user will be able to tell the car «Stop there» or «Take that exit». In this way, the user control/spontaneity vs interaction flexibility dilemma that current autonomous vehicle concepts have, could be solved, potentially increasing the user acceptance of this technology. The system was designed following a level structured state machine approach. The simulations were developed using MATLAB and VREP, a robotics simulation platform, which has accurate vehicle and sensor models.
Technical Paper

Handling Deviation for Autonomous Vehicles after Learning from Small Dataset

2018-04-03
2018-01-1091
Learning only from a small set of examples remains a huge challenge in machine learning. Despite recent breakthroughs in the applications of neural networks, the applicability of these techniques has been limited by the requirement for large amounts of training data. What’s more, the standard supervised machine learning method does not provide a satisfactory solution for learning new concepts from little data. However, the ability to learn enough information from few samples has been demonstrated in humans. This suggests that humans may make use of prior knowledge of a previously learned model when learning new ones on a small amount of training examples. In the area of autonomous driving, the model learns to drive the vehicle with training data from humans, and most machine learning based control algorithms require training on very large datasets. Collecting and constructing training data set takes a huge amount of time and needs specific knowledge to gather relevant information.
Technical Paper

Conceptualization and Implementation of a Scalable Powertrain, Modular Energy Storage and an Alternative Cooling System on a Student Concept Vehicle

2018-04-03
2018-01-1185
The Deep Orange program immerses automotive engineering students into the world of an OEM as part of their 2-year graduate education. In support of developing the program’s seventh vehicle concept, the students studied the sponsoring brand essence, conducted market research, and made a heuristic assessment of competitor vehicles. The upfront research lead to the definition of target customers and setting vehicle level targets that were broken down into requirements to develop various vehicle sub-systems. The powertrain team was challenged to develop a scalable propulsion concept enabled by a common vehicle architecture that allowed future customers to select (at the point of purchase) among various levels of electrification best suiting their needs and personal desires. Four different configurations were identified and developed: all-electric, two plug-in hybrid electric configurations, and an internal combustion engine only.
Technical Paper

Evaluation of CarFit® Criteria Compliance and Knowledge of Seat Adjustment

2018-04-03
2018-01-1314
Improper fit in a vehicle will affect a driver’s ability to reach the steering wheel and pedals, view the roadway and instrument gauges, and allow vehicle safety features to protect the driver during a crash. CarFit® is a community outreach program to educate older drivers on proper “fit” within their personal vehicle. A subset of measurements from CarFit® were used to quantify the “fit” of 97 older drivers over 60 and 20 younger drivers, ages 30-39, in their personal vehicles. Binary, logistic regression was used to assess the likelihood of drivers meeting the CarFit® measurement criteria prior to and after CarFit® education. The results showed older drivers were five times more likely than younger drivers to meet the CarFit® criteria for line of sight above the steering wheel, suggesting that younger drivers would also benefit from CarFit® education.
Technical Paper

The Ingress and Egress Strategies of Wheelchair Users Transferring Into and Out of Two Sedans

2018-04-03
2018-01-1321
The ability to independently transfer into and out of a vehicle is essential for many wheelchair users to achieve driving independence. The purpose of the current study is to build upon the previous exploratory study that investigated the transfer strategies of wheelchair users by observing YouTube videos. This observational study videotaped five wheelchair users transferring from their wheelchairs into two research vehicles, a small and mid-size sedan that were equipped with a 50mm grid. The goal of this study was to use these videos and vehicle grids to precisely identify ingress and egress motions as well as “touch points” in a controlled setting with a small sample of five male wheelchair users. Using the videos from multiple different camera perspectives, the participants’ ingress and egress transfers were coded, documenting the touch points and step-by-step action sequences.
X