Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Computational method to determine the cooling airflow utilization ratio of passenger cars considering component deformation

2024-07-02
2024-01-2975
In order to improve the efficiency of passenger cars, developments focus on decreasing their aerodynamic drag, part of which is caused by cooling air. Thus, car manufacturers try to seal the cooling air path to prevent leakage flows. Nevertheless, gaps between the single components of the cooling air path widen due to the deformation of components under air load. For simulating the Cooling Airflow Utilization Ratio (CAUR), Computational Fluid Dynamics (CFD) simulations are used, which neglect component deformation. In this paper, a computational method aiming at sufficient gap resolution and determining the CAUR of passenger cars under the consideration of component deformation is developed. Therefore, a partitioned approach of Fluid Structure Interaction (FSI) simulations is used. The fluid field is simulated in OpenFOAM, whereas the structural simulations are conducted using Pam-Crash.
Technical Paper

Trim-structure interface modelling and simulation approaches for FEM applications

2024-06-12
2024-01-2954
Trim materials are often used for vibroacoustic energy absorption purposes within vehicles. To estimate the sound impact at a driver’s ear, the substructuring approach can be applied. Thus, transfer functions are calculated starting from the acoustic source to the car body, from the car body to the trim and, finally, from the trim to the inner cavity where the driver is located. One of the most challenging parts is the calculation of the transfer functions from the car body inner surface to the bottom trim surface. Commonly, freely laying mass-spring systems (trims) are simulated with a fixed boundary and interface phenomena such as friction, stick-slip or discontinuities are not taken into consideration. Such an approach allows for faster simulations but results in simulations strongly overestimating the energy transfer, particularly in the frequency range where the mass-spring system’s resonances take place.
Technical Paper

Advanced squeak and rattle noise prediction for vehicle interior development – numerical simulation and experimental validation

2024-06-12
2024-01-2925
Squeak and rattle (SAR) noise audible inside a passenger car causes the product quality perceived by the customer to deteriorate. The consequences are high warranty costs and a loss in brand reputation for the vehicle manufacturer in the long run. Therefore, SAR noise must be prevented. This research shows the application and experimental validation of a novel method to predict SAR noise on an actual vehicle interior component. The novel method is based on non-linear theories in the frequency domain. It uses the harmonic balance method in combination with the alternating frequency/time domain method to solve the governing dynamic equations. The simulation approach is part of a process for SAR noise prediction in vehicle interior development presented herein. In the first step, a state-of-the-art linear frequency-domain simulation estimates an empirical risk index for SAR noise emission. Critical spots prone to SAR noise generation are located and ranked.
Technical Paper

Frequency-based substructuring for virtual prediction and uncertainty quantification of thin-walled vehicle seat structures

2024-06-12
2024-01-2946
Finite element simulation (FE) makes it possible to analyze the structural dynamic behavior of vehicle seat structures in early design phases to meet Noise-Vibration-Harshness (NVH) requirements. For this purpose, linear simulations are usually used, which neglect many nonlinear mechanical properties of the real structure. These models are trimmed to fit global vibration behavior based on the complex description of contact or jointed definitions. Targeted design is therefore only possible to a limited extent. The aim of this work is to characterize the entire seat structure and its sub-components in order to identify the main contributors using experimental and simulative data. The Lagrange Multiplier Frequency Based Substructuring (LM-FBS) method is used for this purpose. Therefore, the individual subsystems of seat frame, seat backrest and headrest are characterized under different conditions.
Technical Paper

Measurement of the Particle Distribution around the Tire of a Light Commercial Vehicle on Unpaved Roads

2024-03-13
2024-01-5032
Dust testing of vehicles on unpaved roads is crucial in the development process for automotive manufacturers. These tests aim to ensure the functionality of locking systems in dusty conditions, minimize dust concentration inside the vehicle, and enhance customer comfort by preventing dust accumulation on the car body. Additionally, deposition on safety-critical parts, such as windshields and sensors, can pose threats to driver vision and autonomous driving capabilities. Currently, dust tests are primarily conducted experimentally at proving grounds. In order to gain early insights and reduce the need for costly physical tests, numerical simulations are becoming a promising alternative. Although simulations of vehicle contamination by dry dust have been studied in the past, they have often lacked detailed models for tire dust resuspension. In addition, few publications address the specifics of dust deposition on vehicles, especially in areas such as door gaps and locks.
Technical Paper

Side Mirror Soiling Investigation through the Characterization of Water Droplet Formation and Size behind a Generic Plate

2024-02-27
2024-01-5030
The improvement of vehicle soiling behavior has increasing interest over the past few years not only to satisfy customer requirements and ensure a good visibility of the surrounding traffic but also for autonomous vehicles, for which soiling investigation and improvement are even more important due to the demands of the cleanliness and induced functionality of the corresponding sensors. The main task is the improvement of the soiling behavior, i.e., reduction or even prevention of soiling of specific surfaces, for example, windows, mirrors, and sensors. This is mostly done in late stages of vehicle development and performed by experiments, e.g., wind tunnel tests, which are supplemented by simulation at an early development stage. Among other sources, the foreign soiling on the side mirror and the side window depend on the droplet detaching from the side mirror housing.
Technical Paper

Steer-by-Wire: Universal Calculation of Production-Dependent, Strongly Fluctuating Friction in Steering

2023-11-22
2023-01-5082
In steer-by-wire (SbW) vehicles, understanding the steering rack force is essential to replicate a realistic steering feel, allowing conclusions to be drawn about road surface conditions by the decoupled manual actuator. Since internal friction varies with each steering system manufactured and installed, these models differ greatly in accuracy. This paper presents a concept for continuously calculating fluctuating friction based on the internal steering variables to avoid additional and complex individual measurements. An SbW system offers the right approach by adjusting the driver’s desired steering angle and the required motor control. The underlying steering clearance and the Kalman filter are used to calculate the steering rack force. The validity of the proposed concept is shown in drive tests according to ISO 13674 and ISO 7401 to gauge high and low friction values in different speed ranges.
Technical Paper

Leveraging Historical Thermal Wind Tunnel Data for ML-Based Predictions of Component Temperatures for a New Vehicle Project

2023-06-26
2023-01-1216
The thermal operational safety (TOS) of a vehicle ensures that no component exceeds its critical temperature during vehicle operation. To enhance the current TOS validation process, a data-driven approach is proposed to predict maximum component temperatures of a new vehicle project by leveraging the historical thermal wind tunnel data from previous vehicle projects. The approach intends to support engineers with temperature predictions in the early phase and reduce the number of wind tunnel tests in the late phase of the TOS validation process. In the early phase, all measurements of the new vehicle project are predicted. In the late phase, a percentage of measurements with the test vehicle used for the model training and the remaining tests are predicted with the trained ML model. In a first step, data from all wind tunnel tests is extracted into a joint dataset together with metadata about the vehicle and the executed load case.
Technical Paper

Numerical Investigations of the Dust Deposition Behavior at Light Commercial Vehicles

2023-04-24
2023-01-5022
Dry dust testing of vehicles on unpaved dust roads plays a crucial role in the development process of automotive manufacturers. One of the central aspects of the test procedure is ensuring the functionality of locking systems in the case of dust ingress and keeping the dust below a certain concentration level inside the vehicle. Another aspect is the customer comfort because of dust deposited on the surface of the car body. This also poses a safety risk to customers when the dust settles on safety-critical parts such as windshields and obstructs the driver’s view. Dust deposition on sensors is also safety critical and is becoming more important because of the increasing amount of sensors for autonomous driving. Nowadays, dust tests are conducted experimentally at dust proving grounds. To gain early insights and avoid costly physical testing, numerical simulations are considered a promising approach. Simulations of vehicle contamination by dry dust have been studied in the past.
Technical Paper

Function-in-the-Loop Simulation of Electromechanical Steering Systems—Concept, Implementation, and Use Cases

2023-02-10
2023-01-5011
The accelerated processes in vehicle development require new technologies for function development and validation. With this motivation, Function-in-the-Loop (FiL) simulation was developed as a link between Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) simulation. The combination of real Electronic Control Unit (ECU) hardware and software in conjunction with virtual components is very well suited for function development and testing. This approach opens up new possibilities for mechatronic systems that would otherwise require special test benches. For this reason, an Electric Power Steering (EPS) was transferred to a virtual environment using FiL simulation. This enables a wide range of applications, from EPS testing to the development of connected driving functions on an integrated platform. Right from the early development phases, the technology can be used purposefully with short integration cycles.
Technical Paper

Experimental Investigation of Droplet Formation and Droplet Sizes Behind a Side Mirror

2022-12-27
2022-01-5107
The investigation of vehicle soiling by improvement of vehicle parts to optimize the surrounding airflow is of great importance not only because of the visibility through windows and at mirrors but also the functionality of different types of sensors (camera, lidar, radars, etc.) for the driver assistance systems and especially for autonomous driving vehicles has to be guaranteed. These investigations and corresponding developments ideally take place in the early vehicle development process since later changes are difficult to apply in the vehicle production process for many reasons. Vehicle soiling is divided into foreign soiling and self-soiling with respect to the source of the soiling water, e.g., direct rain impact, swirled (dirty) water of other road users and own rotating wheels. The investigations of the soiling behavior of vehicles were performed experimentally in a wind tunnel and street tests.
Technical Paper

Evaluation of Fast Detailed Kinetics Calibration Methodology for 3D CFD Simulations of Spray Combustion

2022-08-30
2022-01-1042
Meeting strict current and future emissions legislation necessitates development of computational tools capable of predicting the behaviour of combustion and emissions with an accuracy sufficient to make correct design decisions while keeping computational cost of the simulations amenable for large-scale design space exploration. While detailed kinetics modelling is increasingly seen as a necessity for accurate simulations, the computational cost can be often prohibitive, prompting interest in simplified approaches allowing fast simulation of reduced mechanisms at coarse grid resolutions appropriate for internal combustion engine simulations in design context. In this study we present a simplified Well-stirred Reactor (WSR) implementation coupled with 3D CFD Ricardo VECTIS solver.
Technical Paper

Comparison of Methods Between an Acceleration-Based In-Situ and a New Hybrid In-Situ Blocked Force Determination

2022-06-15
2022-01-0979
The NVH-development cycle of vehicle components often requires a source characterization separated from the vehicle itself, which leads to the implementation of test bench setups. In the context of frequency based substructuring and transfer path analysis, a component can be characterized using Blocked Forces. The following paper provides a comparison of methods between an acceleration-based in-situ and a new hybrid in-situ Blocked Force determination, using measurements of an artificially excited electric power steering (EPS). Under real-life conditions on a test rig, the acceleration-based in-situ approach often shows limitations in the lower frequency range, due to relatively bad signal-to-noise ratio at the indicator sensors, while delivering accurate results in the higher spectrum. Due to considerable loads on components in operation, the stiffness of the test-rig cannot be decreased arbitrarily.
Journal Article

Acoustic-Fluid-Structure Interaction (AFSI) in the Car Underbody

2022-06-15
2022-01-0938
The turbulent flow around vehicles causes high amplitude pressure fluctuations at the underbody, consisting of both hydromechanic and acoustic contributions. This induces vibrations in the underbody structures, which in turn may lead to sound transmission into the passenger compartment, especially at low frequencies. To study these phenomena we present a run time fully coupled acoustic-fluid-structure interaction framework expanding a validated hybrid CFD-CAA solver. The excited and vibrating underbody is resembled by an aluminium plate in the underbody of the SAE body which allows for sound transmission into the interior. Different excitation situations are generated by placing obstacles at the underbody upstream of the aluminium plate. For this setup we carry out a fully coupled simulation of flow, acoustics and vibration of the plate.
Journal Article

Variational Autoencoders for Dimensionality Reduction of Automotive Vibroacoustic Models

2022-06-15
2022-01-0941
In order to predict reality as accurately as possible leads to the fact that numerical models in automotive vibroacoustic problems become increasingly high dimensional. This makes applications with a large number of model evaluations, e.g. optimization tasks or uncertainty quantification hard to solve, as they become computationally very expensive. Engineers are thus faced with the challenge of making decisions based on a limited number of model evaluations, which increases the need for data-efficient methods and reduced order models. In this contribution, variational autoencoders (VAEs) are used to reduce the dimensionality of the vibroacoustic model of a vehicle body and to find a low-dimensional latent representation of the system.
Journal Article

Gaussian Processes for Transfer Path Analysis Applied on Vehicle Body Vibration Problems

2022-06-15
2022-01-0948
Transfer path analyses of vehicle bodies are widely considered as an important tool in the noise, vibration and harshness design process, as they enable the identification of the dominating transfer paths in vibration problems. It is highly beneficial to model uncertain parameters in early development stages in order to account for possible variations on the final component design. Therefore, parameter studies are conducted in order to account for the sensitivities of the transfer paths with respect to the varying input parameters of the chassis components. To date, these studies are mainly conducted by performing sampling-based finite element simulations. In the scope of a sensitivity analysis or parameter studies, however, a large amount of large-scale finite element simulations is required, which leads to extremely high computational costs and time expenses. This contribution presents a method to drastically reduce the computational burden of typical sampling-based simulations.
Journal Article

Sensitivity Analysis of NVH Simulations with Stochastic Input Parameters for a Car Body

2022-06-15
2022-01-0951
Uncertainties play a major role in vibroacoustics - especially in car body design in the preliminary development because of the overall spread in the production that should be covered with one simulation model. Therefore, we use uncertain input parameters to determine the stochastically distributed admittance of the car body before each part of the car is fully designed. To gain a stochastic result - the stochastically distributed admittance curve - we calculate a deterministic finite element simulation several times with sets of stochastically distributed input parameter values. To reduce simulation time and cost of the car model with many million degrees of freedom we focus on the uncertain parameters that show a significant influence on the admittance curve. It is therefore necessary to be able to accurately estimate for each parameter if its influence on the admittance of the car body plays a major role for the noise vibration harshness simulation.
Journal Article

Investigation of Influences on Brake Pad Wear

2020-10-05
2020-01-1614
To date, no generally valid statements can be made about the service life of brake pads, which may be due to factors such as driving style, the friction material used or the varying vehicle weight. While dynamic friction models including friction history are already established [1], the investigation of wear and wear dust behavior is currently in the focus of many research projects. One example is the investigation of calculation models for brake pad wear while neglecting the temperature development in the brake [2]. In cars, temperatures of up to 800°C occur in the brake under high loads, which leads to a significant increase in wear. Accordingly, the question arises how an estimation of brake pad wear can be applied to highly dynamic load cases. To do this, however, the processes taking place in the boundary layer between pad and disc must first be comprehensively understood and described.
Technical Paper

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting

2020-09-30
2020-01-1515
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility.
Technical Paper

Inverse Characterization of Vibro-Acoustic Subsystems for Impedance-Based Substructuring Approaches

2020-09-30
2020-01-1582
Substructuring approaches are helpful methods to solve and understand vibro-acoustic problems involving systems as complex as a vehicle. In that case, the whole system is split into smaller, simpler to solve, subsystems. Substructuring approaches allow mixing different modeling “solvers” (closed form solutions, numerical simulations or experiments). This permits to reach higher frequencies or to solve bigger systems. Finally, one of the most interesting features of substructuring approaches is the possibility to combine numerical and experimental descriptions of subsystems. The latter point is particularly interesting when dealing with subdomains that remain difficult to model with numerical tools (assembly, trim, sandwich panels, porous materials, etc.). The Patch Transfer Functions (PTF) method is one of these substructuring approaches. It condenses information (impedance matrix) of subsystems on their coupling surfaces.
X