Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Optical and Numerical Characterization of Directly Injected Compressed Natural Gas Jet Development at Engine-Relevant Conditions

2019-04-02
2019-01-0294
Compressed natural gas (CNG) is an attractive, alternative fuel for spark-ignited (SI), internal combustion (IC) engines due to its high octane rating, and low energy-specific CO2 emissions compared with gasoline. Directly-injected (DI) CNG in SI engines has the potential to dramatically decrease vehicles’ carbon emissions; however, optimization of DI CNG fueling systems requires a thorough understanding of the behavior of CNG jets in an engine environment. This paper therefore presents an experimental and modeling study of DI gaseous jets, using methane as a surrogate for CNG. Experiments are conducted in a non-reacting, constant volume chamber (CVC) using prototype injector hardware at conditions relevant to modern DI engines. The schlieren imaging technique is employed to investigate how the extent of methane jets is impacted by changing thermodynamic conditions in the fuel rail and chamber.
Technical Paper

Optical Characterization of Propane at Representative Spark Ignition, Gasoline Direct Injection Conditions

2016-04-05
2016-01-0842
The focus of internal combustion (IC) engine research is the improvement of fuel economy and the reduction of the tailpipe emissions of CO2 and other regulated pollutants. Promising solutions to this challenge include the use of both direct-injection (DI) and alternative fuels such as liquefied petroleum gas (LPG). This study uses Mie-scattering and schlieren imaging to resolve the liquid and vapor phases of propane and iso-octane, which serve as surrogates for LPG and gasoline respectively. These fuels are imaged in a constant volume chamber at conditions that are relevant to both naturally aspirated and boosted, gasoline direct injection (GDI) engines. It is observed that propane and iso-octane have different spray behaviors across these conditions. Iso-octane is subject to conventional spray breakup and evaporation in nearly all cases, while propane is heavily flash-boiling throughout the GDI operating map.
X