Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Stochastic Physical Simulation Framework to Quantify the Effect of Rainfall on Automotive Lidar

2019-04-02
2019-01-0134
The performance of environment perceiving sensors such as e.g. lidar, radar, camera and ultrasonic sensors is safety critical for automated driving vehicles. Therefore, one has to assess the sensors’ performance to assure the automated driving system’s safety. The performance of these sensors is however to some degree sensitive towards adverse weather conditions. A challenge is to quantify the effect of adverse weather conditions on the sensor’s performance early in the development of an automated driving system. This challenge is addressed in this work for lidar sensors. The lidar equation was previously employed in this context to derive estimates of a lidar’s maximum range in different weather conditions. In this work, we present a stochastic simulation framework based on a probabilistic extension of the lidar equation, to quantify the effect of adverse rainfall conditions on a lidar’s raw detection performance.
Technical Paper

Simulation and Its Contribution to Evaluate Highly Automated Driving Functions

2019-04-02
2019-01-0140
A key criterion for launching autonomous vehicles on real roads is the knowledge of their capability to ensure traffic safety. In contrast to ADAS, deriving this measure of safety is difficult to achieve as the functional scope of an autonomous driving function exceeds by far the one of ADAS. As a consequence, real-world testing solely is not sufficient enough to cover the required test volume. This assessment problem imposes new requirements on a valid test concept for automated driving. A possible solution represents simulation by enabling it to generate reliable test kilometers. As a first step, we discuss in this paper the feasibility of simulation frameworks to re-simulate a real-world test in certain scenarios. We will demonstrate that even with ground truth information of the vehicle odometry and corresponding environment model an acceptable accordance of functional behavior is not guaranteed.
Technical Paper

Student Concept Vehicle: Development and Usability of an Innovative Holographic User Interface Concept and a Novel Parking Assistance System Concept

2019-04-02
2019-01-0396
The Deep Orange program is a concept vehicle development program focused on providing hands-on experience in design, engineering, prototyping and production planning as part of students’ two-year MS graduate education. Throughout this project, the team was challenged to create innovative concepts during the ideation phase as part of building the running vehicle. This paper describes the usability studies performed on two of the vehicle concepts that require driver interaction. One concept is a human machine interface (HMI) that uses a holographic companion that can act as a concierge for all functions of the vehicle. After creating a prototype using existing technologies and developing a user interface controlled by hand gestures, a usability study was completed with older adults. The results suggest the input method was not intuitive. Participants demonstrated better performance with tasks using discrete hand motions in comparison to those that required continuous motions.
Technical Paper

Application of Dynamic Mode Decomposition to Influence the Driving Stability of Road Vehicles

2019-04-02
2019-01-0653
The recent growth of available computational resources has enabled the automotive industry to utilize unsteady Computational Fluid Dynamics (CFD) for their product development on a regular basis. Over the past years, it has been confirmed that unsteady CFD can accurately simulate the transient flow field around complex geometries. Concerning the aerodynamic properties of road vehicles, the detailed analysis of the transient flow field can help to improve the driving stability. Until now, however, there haven’t been many investigations that successfully identified a specific transient phenomenon from a simulated flow field corresponding to driving stability. This is because the unsteady flow field around a vehicle consists of various time and length scales and is therefore too complex to be analyzed with the same strategies as for steady state results.
Technical Paper

Compensation Strategies for Aging Effects of Common-Rail Injector Nozzles

2019-04-02
2019-01-0944
The thermal and emission efficiency of diesel engines depends to a large extent on the quality of fuel injection. However, over engine lifetime, injection rate and quality will change due to adverse nozzle aging effects, such as coking or cavitation. In this study, we discuss the influences of these effects on injection and heat release rate. The injection rates of previously unused nozzles and a nozzle that had been operated in a vehicle engine were compared in order to clarify the impact of aging effects. The key to the detection of alterations of injection nozzles is the identification of strongly correlating parameters. As a first step, an instrumented injector was set up to measure fuel pressure inside the feed line of the injector and the lift of the control piston. Different nozzles showed a distinguishable control piston motion depending on their different geometric specifications, which also affect the injection rates.
Technical Paper

Investigation of an Innovative Combustion Process for High-Performance Engines and Its Impact on Emissions

2019-01-15
2019-01-0039
Over the past years, the question as to what may be the powertrain of the future has become ever more apparent. Aiming to improve upon a given technology, the internal combustion engine still offers a number of development paths in order to maintain its position in public and private mobility. In this study, an innovative combustion process is investigated with the goal to further approximate the ideal Otto cycle. Thus far, similar approaches such as Homogeneous Charge Compression Ignition (HCCI) shared the same objective yet were unable to be operated under high load conditions. Highly increased control efforts and excessive mechanical stress on the components are but a few examples of the drawbacks associated with HCCI. The approach employed in this work is the so-called Spark Assisted Compression Ignition (SACI) in combination with a pre-chamber spark plug, enabling short combustion durations even at high dilution levels.
Technical Paper

From Theory to Three-Dimensional Finite Element Models: An Innovative Method for Validation

2018-06-13
2018-01-1536
As a key part of numerical analysis, the modeling process has a tremendous influence on the quality of the results. While there is general awareness concerning uncertainties that arise during modeling, their quantity and sensitivity rarely are known. Hence, modeling quickly can become inaccurate and inefficient. The scope of the present paper is to innovate predictive modeling processes concerning the dynamics of real complex structures by means of linear modal analysis with the finite element method (FEM). The aim is to offer a transparent design catalog relating specific uncertainties to each model component in order to achieve error prevention for engineers dealing with comparable systems. A complex system is simplified and investigated for different levels of detail. Only after the model uncertainties for one level of detail are obtained, the next level of complexity is approached.
Technical Paper

Frequency and Temperature Dependent Stiffness and Damping Properties of Reduced Viscoelastic Structures Using Component Mode Synthesis (CMS)

2018-06-13
2018-01-1498
Model Order Reduction (MOR) methods such as Component Mode Synthesis (CMS) have been used in order to simulate large linear dynamic systems for many years and have reached a considerable level of saturation. These reduction methods have many advantages such as minimizing computational costs but also have restrictions. One of their disadvantages is that material damping characteristics can only be defined in form of Rayleigh damping. Another disadvantage is that the reduced order model can only represent one state of the structure determined in the generation process of the reduced matrices. In this paper we present a way to consider material damping in reduced matrices that contain one or more materials having different damping characteristics without the disadvantages of using Rayleigh damping.
Technical Paper

A Fluid-Structure Interaction Scheme for Prediction of Flow-Induced Low Frequency Booming Noise

2018-06-13
2018-01-1521
The analysis of the acoustic behavior of flow fields has gained importance in recent years, especially in the automotive industry. The comfort of the driver is heavily influenced by the noise levels and characteristics, especially during long distance drives. Simulation tools can help to analyze the acoustic properties of a car at an early stage of the development process. This work focuses on the low-frequency sound effects, which can be a significant noise component under certain operating conditions. As a first step in the fluid-structure interaction workflow, the flow around a series-production vehicle is simulated, including passenger cabin and underhood flow. The complexity of this model poses extensive demands on the simulation software, concerning meshing, turbulence modeling and level of parallelism. We conducted a transient simulation of the compressible fluid flow, using a hybrid RANS/LES approach.
Technical Paper

Efficient Vibro-Acoustic Optimisation of a Thermoplastic Composite Oil Pan

2018-06-13
2018-01-1480
Thermoplastic fibre reinforced composites offer a wide range of adjusting the material behaviour by varying material selection, layup and fibre orientation. By default, damping and stiffness of composites are contradictory material properties related to the fibre orientation. Thus, finite element analysis (FEA) based composite design requires special modelling efforts implying anisotropic damping of the composite as well as fluid-structure-inter-action for the oil filling. In contrast, multi-dimensional optimisations for various layups require computationally fast numerical solutions. In this study, a complex but efficient vibro-acoustic modelling approach of a composite oil pan is presented. The FEA model includes a strain energy based modal damping approach for the layerwise accumulation of the anisotropic composite damping as well as a structural representation of the additional mass of the oil filling avoiding fluid modelling.
Technical Paper

Locally Structured Fiber Reinforcements: An Approach to Realize Anisotropic Directivity Pattern in Ultrasound Transducers

2018-06-13
2018-01-1485
Ultrasonic transducers are widely used in automotive and industrial applications for surround sensing. Anisotropic directivity patterns with a narrow-angled beam in the vertical plane and a wide-angled beam in the horizontal plane are needed in automotive applications particularly. Today’s ultrasonic transducers for automotive applications are mainly metal based, pot-like ultrasonic transducers. The anisotropic directivity pattern is achieved by increasing the thickness of the vibrating plate-like part of the structure locally. Composites with locally structured fiber reinforcements open up the possibility to design the dynamical behavior of components without changing its contour. Using this new dimension of design to modify the directivity pattern of sound radiating components is less examined in literature.
Technical Paper

Real-Time Measurement of the Piston Ring Gap Positions and Their Effect on Exhaust Engine Oil Emission

2018-05-05
2018-01-5006
Measurement techniques for piston ring rotation, engine oil emission and blow by have been implemented on a single-cylinder petrol engine. A novel method of analysis allows continuous and fast real-time identification of the piston ring rotation of the two compression rings, while the mass-spectrometric analysis of the exhaust gas delivers the cylinder oil emission instantly and with a high temporal resolution. Only minor modifications to the piston rings were made for the insertion of the γ-emitters, the rings rotate freely around the circumference of the piston. The idea of this setup is that through online observation at the test bench, instant feedback of the measured variables is available, making it possible to purposefully select and compare measurement points. The high time resolution of the measurement methods enables the analysis of dynamic effects. In this article, the measurement setup and evaluation method is described.
Technical Paper

Motion Cueing Algorithm for a 9 DoF Driving Simulator: MPC with Linearized Actuator Constraints

2018-04-03
2018-01-0570
In times when automated driving is becoming increasingly relevant, dynamic simulators present an appropriate simulation environment to faithfully reproduce driving scenarios. A realistic replication of driving dynamics is an important criterion to immerse persons in the virtual environments provided by the simulator. Motion Cueing Algorithms (MCAs) compute the simulator’s control input, based on the motions of the simulated vehicle. The technical restrictions of the simulator’s actuators form the main limitation in the execution of these input commands. Typical dynamic simulators consist of a hexapod with six degrees of freedom (DoF) to reproduce the vehicle motion in all dimensions. Since its workspace dimensions are limited, significant improvements in motion capabilities can be achieved by expanding the simulator with redundant DoF by means of additional actuators.
Technical Paper

Method to Derive Monetarily Effective Parameters for ADAS at Parking and Maneuvering

2018-04-03
2018-01-0605
The effectiveness of ADAS addressing property damage has an increasing impact on car manufacturers, insurers and customers, as accident avoidance or mitigation can lead to loss reduction. In order to obtain benefits, it is essential that ADAS primarily address monetarily relevant accident scenarios. Furthermore, sensor technologies and algorithms have to be configured in a way that relevant accident situations can be sufficiently avoided at reasonable system costs. A new methodology is developed to identify and configure monetarily effective parameters for ADAS during parking and maneuvering. ADAS parameters e.g. relevant accident scenarios, required crash avoidance speeds and different sensor layouts are analyzed and evaluated using a real-world in-depth accident database of insurance claims provided by Allianz Center for Technology and Allianz Automotive Innovation Center. For this purpose, a sensitivity analysis is conducted to identify most monetarily effective accident scenarios.
Technical Paper

Conceptualization and Implementation of a Scalable Powertrain, Modular Energy Storage and an Alternative Cooling System on a Student Concept Vehicle

2018-04-03
2018-01-1185
The Deep Orange program immerses automotive engineering students into the world of an OEM as part of their 2-year graduate education. In support of developing the program’s seventh vehicle concept, the students studied the sponsoring brand essence, conducted market research, and made a heuristic assessment of competitor vehicles. The upfront research lead to the definition of target customers and setting vehicle level targets that were broken down into requirements to develop various vehicle sub-systems. The powertrain team was challenged to develop a scalable propulsion concept enabled by a common vehicle architecture that allowed future customers to select (at the point of purchase) among various levels of electrification best suiting their needs and personal desires. Four different configurations were identified and developed: all-electric, two plug-in hybrid electric configurations, and an internal combustion engine only.
Journal Article

Optimal Injection Strategies to Compensate for Injector Aging in Common Rail Fuel Systems

2018-04-03
2018-01-1160
Aging effects such as coking or erosive damage that occur in fuel injection nozzles are known to deteriorate the engine performance. This article proposes an optimization method to compensate for injector aging and to control the combustion behavior over engine lifetime by adapting the injection strategy. First, a control-oriented combustion model is presented, which takes the condition of the injection nozzle into account. In combination with a simulation model of the entire fuel injection system from a previous study, the model is capable of predicting the heat release rate (HRR) at different working conditions. Measurements with a single-cylinder diesel engine were performed, using injectors with modified and aged nozzles, to validate the proposed combustion model and particularly to analyze the influence of injector aging. Using the simulation model, optimal injection strategies were obtained by applying a line search optimization scheme to recover a reference HRR trajectory.
Technical Paper

Experimental and Simulative Approaches for the Determination of Discharge Coefficients for Inlet and Exhaust Valves and Ports in Internal Combustion Engines

2017-11-27
2017-01-5022
In order to fulfill future exhaust emission regulations, the variety of subsystems of internal combustion engines is progressively investigated and optimized in detail. The present article mainly focuses on studies of the flow field and the resulting discharge coefficients of the intake and exhaust valves and ports. In particular, the valves and ports influence the required work for the gas exchange process, as well as the cylinder charge and consequently highly impact the engine’s performance. For the evaluation of discharge coefficients of a modern combustion engine, a stationary flow test bench has been set up at the Chair of Internal Combustion Engines (LVK) of the Technical University of Munich (TUM). The setup is connected to the test bench’s charge air system, allowing the adjustment and control of the system pressure, as well as the pressure difference across the particular gas exchange valve.
Technical Paper

Experimental Investigation of Orifice Design Effects on a Methane Fuelled Prechamber Gas Engine for Automotive Applications

2017-09-04
2017-24-0096
Due to its molecular structure, methane provides several advantages as fuel for internal combustion engines. To cope with nitrogen oxide emissions high levels of excess air are beneficial, which on the other hand deteriorates the flammability and combustion duration of the mixture. One approach to meet these challenges and ensure a stable combustion process are fuelled prechambers. The flow and combustion processes within these prechambers are highly influenced by the position, orientation, number and overall cross-sectional area of the orifices connecting the prechamber and the main combustion chamber. In the present study, a water-cooled single cylinder test engine with a displacement volume of 0.5 l is equipped with a methane-fuelled prechamber. To evaluate influences of the aforementioned orifices several prechambers with variations of the orientation and number of nozzles are used under different operating conditions of engine speed and load.
Technical Paper

Technology from Highly Automated Driving to Improve Active Pedestrian Protection Systems

2017-03-28
2017-01-1409
Highly Automated Driving (HAD) opens up new middle-term perspectives in mobility and is currently one of the main goals in the development of future vehicles. The focus is the implementation of automated driving functions for structured environments, such as on the motorway. To achieve this goal, vehicles are equipped with additional technology. This technology should not only be used for a limited number of use cases. It should also be used to improve Active Safety Systems during normal non-automated driving. In the first approach we investigate the usage of machine learning for an autonomous emergency braking system (AEB) for the active pedestrian protection safety. The idea is to use knowledge of accidents directly for the function design. Future vehicles could be able to record detailed information about an accident. If enough data from critical situations recorded by vehicles is available, it is conceivable to use it to learn the function design.
Technical Paper

Bayesian Test Design for Reliability Assessments of Safety-Relevant Environment Sensors Considering Dependent Failures

2017-03-28
2017-01-0050
With increasing levels of driving automation, the perception provided by automotive environment sensors becomes highly safety relevant. A correct assessment of the sensors’ perception reliability is therefore crucial for ensuring the safety of the automated driving functionalities. There are currently no standardized procedures or guidelines for demonstrating the perception reliability of the sensors. Engineers therefore face the challenge of setting up test procedures and plan test drive efforts. Null Hypothesis Significance Testing has been employed previously to answer this question. In this contribution, we present an alternative method based on Bayesian parameter inference, which is easy to implement and whose interpretation is more intuitive for engineers without a profound statistical education. We show how to account for different environmental conditions with an influence on sensor performance and for statistical dependence among perception errors.
X