Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of New 2.0-Liter Plug-in Hybrid System for the Toyota Prius

2024-04-09
2024-01-2169
Reducing vehicle CO2 emissions is an important measure to help address global warming. To reduce CO2 emissions on a global basis, Toyota Motor Corporation is taking a multi-pathway approach that involves the introduction of the optimal powertrains according to the circumstances of each region, including hybrid electric (HEVs) and plug-in hybrid electric vehicles (PHEVs), as well as battery electric vehicles (BEVs). This report describes the development of a new PHEV system for the Toyota Prius. This system features a traction battery pack structure, transaxle, and power control unit (PCU) with boost converter, which were newly developed based on the 2.0-liter HEV system. As a result, the battery capacity was increased by 1.5 times compared to the previous model with almost the same battery pack size. Transmission efficiency was also improved, extending the distance that the Prius can be driven as an EV by 70%.
Technical Paper

Development of New Motor for Electric Vehicles

2024-04-09
2024-01-2206
The world is currently facing environmental issues such as global warming, air pollution, and high energy demand. To mitigate these challenges, the electrification of vehicles is essential as it is effective for efficient fuel utilization and promotion of alternative fuels. The optimal approach for electrification varies across different markets, depending on local energy conditions and current circumstances. Consequently, Toyota has taken the initiative to offer a comprehensive lineup of battery electric vehicles (BEV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), aiming to provide sustainable solutions tailored to the unique situations and needs of each region. As part of this effort, Toyota has developed the 5th generation of hybrid electric vehicles. This paper describes the electric motor used in the new Toyota Camry which achieves high torque, high power, low losses, and compact design.
Technical Paper

Inverse Analysis of Road Contact Force and Contact Location Using Machine Learning with Measured Strain Data

2024-04-09
2024-01-2267
To adapt to Battery Electric Vehicle (BEV) integration, the significance of protective designs for battery packs against ground impact caused by road debris is very high, and there is also a keen interest in the feasibility assessment technique using Computer-Aided Engineering (CAE) tools for prototype-free evaluations. However, the challenge lies in obtaining real-world empirical data to verify the accuracy of the predictive CAE model. Collecting real-world data using actual battery pack can be time-consuming, costly, and accurately ascertaining the precise direction, magnitude, and location of the force applied from the road to the battery pack poses a challenging task. Therefore, in this study, we developed a methodology using machine learning, specifically Gaussian process regression (GPR), to perform inverse analysis of the direction, magnitude, and location of vehicle-road contact forces during rough road conditions.
Technical Paper

Reduced Order Modeling of Engine Coolant Temperature Model in Plug-In Hybrid Electric Vehicles

2024-04-09
2024-01-2008
In recent years, swift changes in market demands toward achieving carbon neutrality have driven significant developments within the automotive industry. Consequently, employing computer simulations in the early stages of vehicle development has become imperative for a comprehensive understanding of performance characteristics. Of particular importance is the cooling performance of vehicles, which plays a vital role in ensuring safety and overall performance. It is crucial to predict optimal cooling performance, particularly about the heat generated by the powertrain during the initial phases of vehicle development. However, the utilization of thermal analysis models for assessing vehicle cooling performance demands substantial computational resources, rendering them less practical for evaluating performance associated with design changes in the planning phase.
Technical Paper

Multidisciplinary Design Method for Off-Road Vehicles Using Bayesian Active Learning

2024-04-09
2024-01-2595
When developing an off-road vehicle, it is essential to create excellent drivability that enables the vehicle to be driven on all surfaces while ensuring passenger comfort. Since durability is another indispensable performance aspect for these vehicles, the development method must be capable of considering a high-level combination of a wide range of performance targets. This paper proposes a method to identify the region in which each performance aspect is realized through a complex domain combination problem. The proposed method is helpful in the initial design stage when the detailed specifications of the target vehicle are not determined because it is capable of considering both the specifications and usage method of the target vehicle, such as the selection of road profiles and driving speeds as design variables. The proposed method has the advantage of enabling efficient concurrent studies to search for feasible regions.
Technical Paper

Lightweight Design Enabled by Innovative CAE Based Development Method Using Topology Optimization

2024-04-09
2024-01-2454
Carbon neutrality has become a significant target. One essential parameter regarding energy consumption and emissions is the mass of vehicles. Lightweight design improves the result of vehicle life cycle assessment (LCA), increases efficiency, and can be a step towards sustainability and CO2 neutrality. Weight reduction through structural optimization is a challenging task. Typical design development procedures have to be overcome. Instead of just a facelift or the creation of a derivative of the predecessor design, completely alternative design creation methods have to be applied. Automated structural optimization is one tool for exploring completely new design approaches. Different methods are available and weight reduction is the focus of topology optimization. This paper describes a fatigue life homogenization method that enables the weight reduction of vehicle parts. The applied CAE process combines fatigue life prediction and topology optimization.
Technical Paper

Study of Braking Characteristics of New Manual Braking System (1st Report)

2024-04-09
2024-01-2497
The purpose of this study is to propose braking characteristics that are easy for drivers to handle in a system in which braking and driving operations are performed by hand. Genetic algorithm optimization of braking characteristics showed that the best deceleration tracking was achieved by an FG diagram with a logarithmic function shape. In contrast, the slope of the optimal FG diagram tended to decrease as the driver's proportional gain increased.
Technical Paper

The New Toyota 2.4L L4 Turbo Engine with 8AT and 1-Motor Hybrid Electric Powertrains for Midsize Pickup Trucks

2024-04-09
2024-01-2089
Toyota has developed a new 2.4L L4 turbo (2.4L-T) engine with 8AT and 1-motor hybrid electric powertrains for midsize pickup trucks. The aim of these powertrains is to fulfill both strict fuel economy and emission regulations toward “Carbon Neutrality”, while exceeding customer expectations. The new 2.4L L4 turbocharged gasoline engine complies with severe Tier3 Bin30/LEVIII SULEV30 emission regulations for body-on-frame midsize pickup trucks improving both thermal efficiency and maximum torque. This engine is matched with a newly developed 8-speed automatic transmission with wide range and close step gear ratios and extended lock-up range to fulfill three trade-off performances: powerful driving, NVH and fuel economy. In addition, a 1-motor hybrid electric version is developed with a motor generator and disconnect clutch between the engine and transmission.
Technical Paper

Evaluation of Fully Sustainable Low Carbon Gasoline Fuels Meeting Japanese E10 Regular and Premium Octane Specifications

2023-09-29
2023-32-0165
Reducing the carbon emissions associated with ICE- containing vehicles is a complimentary step towards carbon neutrality alongside the introduction of vehicles using newer energy vectors. In this study, the authors investigated emissions and efficiency impact of fully renewable E10-grade gasoline fuels blended with sustainable components at both 90 RON and 96 RON in comparison with reference regular E0 and premium certification gasolines across a range of ICE vehicle applications. Both renewable fuels were blended to the Japan JIS K2022 2012 E10 specification. The study shows very low carbon gasolines are technically feasible and potentially have an important role to play in decarbonizing both new advanced technology ICE vehicles and, critically, the existing ICE vehicle parc in the transition towards a zero emissions future.
Technical Paper

Analysis of the effect of hydrogen combustion characteristics on engine performance

2023-09-29
2023-32-0039
The use of hydrogen produced from renewable energy sources is expected to be one of the most promising options for achieving carbon neutrality in automobiles, in addition to electrification and the use of biofuels and synthetic fuels. In recent years, along with fuel cell electric vehicles (FCEVs), there has been renewed interest in hydrogen engines that can utilize internal combustion engine technology. Although hydrogen has the property of a high laminar burning velocity and a wide flammable range compared to other fuels, the actual combustion phenomenon in a real engine is strongly influenced by the turbulence created by the in- cylinder flow and the distribution of fuel and air in the cylinder due to the formation of the mixture. Therefore, to fully utilize hydrogen as a fuel in actual engines and bring out its performance, it is important to understand the basic combustion characteristics of hydrogen in the cylinder and the effects of these factors on hydrogen combustion.
Technical Paper

New Concept Exhaust Manifold for Next-Generation HEV and PHEV

2023-09-29
2023-32-0062
HEV and PHEV require an improved aftertreatment system to clean the exhaust gas in various driving situations. The efficiency of aftertreatment system is significantly influenced by the residence time of the gas in a catalyst which gas flow has generally strong pulsation. Simulation showed up to 70% reduction of exhaust gas emission if the pulsation could be completely attenuated. A new concept exhaust manifold was designed to minimize pulsation flow by wall impingement, with slight increase of pressure loss. Experimental results with new concept exhaust manifold showed exhaust gas emission were reduced 16% at cold condition and 40% at high-load condition.
Technical Paper

Vehicle Simulations development to predict Electric field level distribution based on GB/T18387 measurement method

2023-09-29
2023-32-0071
The development of electric vehicles has been progressed, rapidly, to achieve Carbon neutrality by 2050. There have been increasing concerns about Electromagnetic Compatibility (EMC) performance due to increasing power for power trains of vehicles. Because same power train system expands to some vehicles, we have developed numerical simulations in order to predict the vehicle EMC performances. We modeled a vehicle which has inverter noises by numerical simulation to calculate electric fields based on GB/T18387. We simulated the common mode noise which flows through the shielding braid of the high voltage wire harnesses. As a result, it is confirmed a correlation between the electric fields calculated by numerical simulation and the measured one.
Technical Paper

Investigation of Compressor Deposit in Turbocharger for Gasoline Engines (Part 2: Practical Application to Turbocharger)

2023-04-11
2023-01-0412
Contribution to carbon neutrality is one of the most important challenges for the automotive industry. Though CO2 emission has been reduced through electrification, internal combustion engines equipped in vehicles such as Hybrid Electric Vehicle (HEV) and Plug-in Hybrid Electric Vehicle (PHEV) are still necessary for the foreseeable future, and continuous efforts to improve fuel economy are demanded. To improve powertrain thermal efficiency, direct-injection turbocharged gasoline engines have been widely utilized in recent years. Super lean-burn combustion engine has been being researched as the next generation of turbocharged gasoline engines. It is known that an increase of the boost pressure causes deposit formation, which decrease the turbocharger efficiency, in the turbocharger compressor housing. To avoid the efficiency loss due to deposit, air temperature at compressor outlet has to be limited low.
Technical Paper

Development of e-AWD Hybrid System with Turbo Engine for SUVs

2023-04-11
2023-01-0470
This paper describes the development of a new e-AWD hybrid system developed for SUVs. This hybrid system consists of a high-torque 2.4-liter turbocharged engine and a front unit that contains a 6-speed automatic transmission, an electric motor, and an inverter. It also includes a rear eAxle unit that contains a water-cooled high-power motor, an inverter, and a reduction gear, as well as a bipolar nickel-metal hydride battery. By combining a turbo engine that can output high torque across a wide range of engine rpm with two electric motors (front and rear), this system achieves both smooth acceleration with a torquey driving feeling and rapid response when the accelerator pedal is pressed. In addition, new AWD control using the water-cooled rear motor realized more stable cornering performance than the previous e-AWD system.
Technical Paper

Development of Control System for Parallel Hybrid System with Turbo Engine

2023-04-11
2023-01-0547
This paper describes a new control technology that coordinates the operation of multiple actuators in a new hybrid electric vehicle (HEV) system consisting of a turbocharged engine, front and rear electric motors, two clutches, and a 6-speed automatic transmission. The development concept for this control technology is to achieve the driver’s desired acceleration G with a natural feeling engine speed. First, to realize linear acceleration G even while the engine is starting from EV mode, clutch hydraulic pressure reduction control is implemented. Furthermore, the engine start timing is optimized to prevent delayed drive force response by predicting the required maximum power during cranking. Second, to realize linear acceleration, this control selects the proper gear position based on the available battery power, considering noise and vibration (NV) restrictions and turbocharging response delays.
Technical Paper

Development of Charging System for bZ4X

2023-04-11
2023-01-0483
In 2022, Toyota launched new battery electric vehicle (BEV), the Toyota bZ4X. Unlike gasoline-powered vehicles, BEVs require charging. Users want increased range and shorter charging times. bZ4X's charging system increased range and shortened AC/DC charging time compared to the Lexus UX300e launched in 2020. A new unit called Electricity Supply Unit (ESU) was developed that integrated a DCDC converter, on-board charger, DC relays, and a branch box for power distribution function into a single unit. The design moved the branch box out of the battery pack to make room for the battery capacity, and it integrated the power conversion function into a single unit, making it more compact than if each unit were mounted separately. A 7 kW or 11 kW on-board charger is included with the vehicle. The 7 kW on-board charger is inside ESU; the 11 kW charger is external to the ESU.
Technical Paper

Development of Three-Way Catalysts with Enhanced Cold Performance

2023-04-11
2023-01-0358
Global focus on CO2 reduction and environmental protection is increasing. To comply with stricter exhaust gas regulations and reduce real world emissions, it is becoming increasingly important to improve the performance of three-way catalysts. Therefore, highly efficient conversion of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) is required. In general, the more active the precious metals used, the better the conversion performance. However, precious metals have supply risks, such as price fluctuation and the uneven distribution of production areas. Therefore, it is necessary to lower emissions while also lowering the amount of precious metals used. This paper focuses on how catalysts are used and describes the development of a new three-way catalyst for the purpose of strengthening cold conversion and decreasing the usage of precious metals.
Technical Paper

Development of Powertrain System and Battery for BEV

2023-04-11
2023-01-0518
Toyota has launched a new BEV which incorporates our newest evolutions in BEV powertrain systems and vehicle platform innovations. The new BEV uses newly developed large format battery cells, which, in addition to achieving our key performance and safety targets, also incorporates new technologies resulting in improved battery energy density and a reduction in battery deterioration. For the BEV battery cooling, to enhance safety, the cooling plate and the battery cells are separated by a chamber structure. The battery pack also incorporates a newly developed high resistance coolant with low conductivity. The new BEV improves system efficiency by leveraging some technologies that were originally developed for HEV and developing new systems. For example, radiant heating and a newly developed heat pump system improve EV driving range. This presentation will introduce our new battery technologies and discuss our new BEV system.
Technical Paper

Development of the New 2.0L Hybrid System for Prius

2023-04-11
2023-01-0474
It is necessary for us to reduce CO2 emissions in order to hold down global warming which is advancing year by year. Toyota Motor Corporation believes that not only the introduction of BEVs but also the sale of the hybrid vehicles must spread in order to achieve the necessary CO2 reduction. Therefore, we planned to improve the attractiveness of future hybrid vehicles. Prius has always made full use of hybrid technologies and leading to significant CO2 reduction. Toyota Motor Corporation has developed a 2.0L hybrid system for the new Prius. We built the system which could achieve a comfortable drive along following the customer’s intention while improving the fuel economy more than a conventional system. The engine improves on both output and thermal efficiency. The transaxle decreases mechanical loss by downsizing the differential, and adoption of low viscosity oil.
Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
X