Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Vibration Comfort Control for HEV Based on Machine Learning

2014-06-30
2014-01-2091
Hybrid electric vehicles (HEVs) with a power-split system offer a variety of possibilities in reduction of CO2 emissions and fuel consumption. Power-split systems use a planetary gear sets to create a strong mechanical coupling between the internal combustion engine, the generator and the electric motor. This concept offers rather low oscillations and therefore passive damping components are not needed. Nevertheless, during acceleration or because of external disturbances, oscillations which are mostly influenced by the ICE, can still occur which leads to a drivability and performance downgrade. This paper proposes a design of an active damping control system which uses the electric motor to suppress those oscillations instead of handling them within the ICE control unit. The control algorithm is implemented as part of an existing hybrid controller without any additional hardware introduced.
Technical Paper

Vehicle Thermal Management Simulation Method Integrated in the Development Process from Scratch to Prototype

2014-04-01
2014-01-0668
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Furthermore the increasing number of vehicle configurations leads to a high variability and degrees of freedom in possible system designs and the control thereof, which can only be handled by a comprehensive tool chain of vehicle system simulation and a generic control system architecture. The required model must comprise all relevant systems of the vehicle (control functionality, cooling system, lubrication system, engine, drive train, HV components etc.). For proper prediction with respect to energy consumption all interactions and interdependencies of those systems have to be taken into consideration, i.e. all energy fluxes (mechanical, hydraulically, electrical, thermal) have to be exchanged among the system boundaries accordingly.
Technical Paper

Advanced Driver Assistance: Chances and Limitations on the Way to Improved Active Safety

2007-04-16
2007-01-1738
Advanced Driver Assistance systems support the driver in his driving tasks. They can be designed to enhance the driver's performance and/or to take over unpleasant tasks from the driver. An important optimization goal is to maintain the driver's activation at a moderate level, avoiding both stress and boredom. Functions requiring a situational interpretation based on the vehicle environment are associated with lower performance reliability than typical stability control systems. Thus, driver assistance systems are designed assuming that drivers will monitor the assistance function while maintaining full control over the vehicle, including the opportunity to override as required. Advanced driver assistance systems have a substantial potential to increase active safety performance of the vehicle, i.e., to mitigate or avoid traffic accidents.
Technical Paper

GPS Augmented Vehicle Dynamics Control

2006-04-03
2006-01-1275
Measurements from a Global Navigation System in conjunction with an Inertial Measurement Unit were recently introduced in different aerial and ground vehicles as an input to control vehicle dynamics. In automobiles this approach could help to further improve braking and / or stability control systems as information like velocity over ground and side slip angle becomes available. This paper presents the technical background, validation through test results and the evaluation of potential benefits of such an “INS/GPS” setup. As a result of the extended measuring capabilities a reduction in braking distance and a more effective stability control becomes possible. The results show an excellent performance that should be exploited in future automotive applications.
Technical Paper

Integrated Chassis Management: Introduction into BMW's Approach to ICM

2006-04-03
2006-01-1219
This paper is supposed to address the BMW approach to the challenge of integrating chassis control systems and it highlights the major issues that have to be addressed. It points out possible solutions for scalable functional and hardware configurations for variable chassis control system combinations. A short outlook is given at possible functional benefits of an integrated structure. Finally, aspects such as components costs (e. g. for sensors and ECUs) as well as reactions on system failures and degradability have to be looked at.
X