Refine Your Search

Topic

Author

Search Results

Journal Article

Variational Autoencoders for Dimensionality Reduction of Automotive Vibroacoustic Models

2022-06-15
2022-01-0941
In order to predict reality as accurately as possible leads to the fact that numerical models in automotive vibroacoustic problems become increasingly high dimensional. This makes applications with a large number of model evaluations, e.g. optimization tasks or uncertainty quantification hard to solve, as they become computationally very expensive. Engineers are thus faced with the challenge of making decisions based on a limited number of model evaluations, which increases the need for data-efficient methods and reduced order models. In this contribution, variational autoencoders (VAEs) are used to reduce the dimensionality of the vibroacoustic model of a vehicle body and to find a low-dimensional latent representation of the system.
Technical Paper

A Fluid-Structure Interaction Scheme for Prediction of Flow-Induced Low Frequency Booming Noise

2018-06-13
2018-01-1521
The analysis of the acoustic behavior of flow fields has gained importance in recent years, especially in the automotive industry. The comfort of the driver is heavily influenced by the noise levels and characteristics, especially during long distance drives. Simulation tools can help to analyze the acoustic properties of a car at an early stage of the development process. This work focuses on the low-frequency sound effects, which can be a significant noise component under certain operating conditions. As a first step in the fluid-structure interaction workflow, the flow around a series-production vehicle is simulated, including passenger cabin and underhood flow. The complexity of this model poses extensive demands on the simulation software, concerning meshing, turbulence modeling and level of parallelism. We conducted a transient simulation of the compressible fluid flow, using a hybrid RANS/LES approach.
Technical Paper

Prediction of Eigenfrequencies and Eigenmodes of Seatbelt Retractors in the Vehicle Environment, Supporting an Acoustically Optimal Retractor Integration by CAE

2018-06-13
2018-01-1543
From an acoustical point of view, the integration of seatbelt retractors in a vehicle is a real challenge that has to be met early in the vehicle development process. The buzz and rattle noise of seat belt retractors is a weak yet disturbing interior noise. Street irregularities excite the wheels and this excitation is transferred via the car body to the mounting location of the retractor. Ultimately, the inertia sensor of the locking mechanism is also excited. This excitation can be amplified by structural resonances and generate a characteristic impact noise. The objective of this paper is to describe a simulation method for an early development phase that predicts the noise-relevant low frequency local modes and consequently the contact of the retractor with the mounting panel of the car body via the finite element method.
Technical Paper

Motion Cueing Algorithm for a 9 DoF Driving Simulator: MPC with Linearized Actuator Constraints

2018-04-03
2018-01-0570
In times when automated driving is becoming increasingly relevant, dynamic simulators present an appropriate simulation environment to faithfully reproduce driving scenarios. A realistic replication of driving dynamics is an important criterion to immerse persons in the virtual environments provided by the simulator. Motion Cueing Algorithms (MCAs) compute the simulator’s control input, based on the motions of the simulated vehicle. The technical restrictions of the simulator’s actuators form the main limitation in the execution of these input commands. Typical dynamic simulators consist of a hexapod with six degrees of freedom (DoF) to reproduce the vehicle motion in all dimensions. Since its workspace dimensions are limited, significant improvements in motion capabilities can be achieved by expanding the simulator with redundant DoF by means of additional actuators.
Technical Paper

Conceptualization and Implementation of a Scalable Powertrain, Modular Energy Storage and an Alternative Cooling System on a Student Concept Vehicle

2018-04-03
2018-01-1185
The Deep Orange program immerses automotive engineering students into the world of an OEM as part of their 2-year graduate education. In support of developing the program’s seventh vehicle concept, the students studied the sponsoring brand essence, conducted market research, and made a heuristic assessment of competitor vehicles. The upfront research lead to the definition of target customers and setting vehicle level targets that were broken down into requirements to develop various vehicle sub-systems. The powertrain team was challenged to develop a scalable propulsion concept enabled by a common vehicle architecture that allowed future customers to select (at the point of purchase) among various levels of electrification best suiting their needs and personal desires. Four different configurations were identified and developed: all-electric, two plug-in hybrid electric configurations, and an internal combustion engine only.
Technical Paper

Technology from Highly Automated Driving to Improve Active Pedestrian Protection Systems

2017-03-28
2017-01-1409
Highly Automated Driving (HAD) opens up new middle-term perspectives in mobility and is currently one of the main goals in the development of future vehicles. The focus is the implementation of automated driving functions for structured environments, such as on the motorway. To achieve this goal, vehicles are equipped with additional technology. This technology should not only be used for a limited number of use cases. It should also be used to improve Active Safety Systems during normal non-automated driving. In the first approach we investigate the usage of machine learning for an autonomous emergency braking system (AEB) for the active pedestrian protection safety. The idea is to use knowledge of accidents directly for the function design. Future vehicles could be able to record detailed information about an accident. If enough data from critical situations recorded by vehicles is available, it is conceivable to use it to learn the function design.
Technical Paper

Designing Sound for Quiet Cars

2016-06-15
2016-01-1839
The quiet nature of hybrid and electric vehicles has triggered developments in research, vehicle manufacturing and legal requirements. Currently, three countries require fitting an Approaching Vehicle Alerting System (AVAS) to every new car capable of driving without a combustion engine. Various other geographical areas and groups are in the process of specifying new legal requirements. In this paper, the design challenges in the on-going process of designing the sound for quiet cars are discussed. A proposal is issued on how to achieve the optimum combination of safety, environmental noise, subjective sound character and technical realisation in an iterative sound design process. The proposed sound consists of two layers: the first layer contains tonal components with their pitch rising along with vehicle speed in order to ensure recognisability and an indication of speed.
Technical Paper

Further Development of a Method to Reproduce Highly Dynamic Force Distance Based Intrusions of Vehicle Side Structure Components

2015-04-14
2015-01-1487
Structural component testing is essential for the development process to have an early knowledge of the real world behaviour of critical structural components in crash load cases. The objective of this work is to show the development for a self-sufficient structural component test bench, which can be used for different side impact crash load cases and can reflect the dynamic behaviour, which current approaches are not able. An existing basic system is used, which includes pneumatic cylinders with a controlled hydraulic brake and was developed for non-structural deformable applications only (mainly occupant assessments). The system is extended with a force-distance control. The method contains the analysis of a whole vehicle FEM simulation to develop a methodology for controlled force transmission with the pneumatic cylinders for a structural component test bench.
Technical Paper

Model-based Engineering Workflow for Automotive Safety Concepts

2015-04-14
2015-01-0273
Although the ISO 26262 provides requirements and recommendations for an automotive functional safety lifecycle, practical guidance on how to handle these safety activities and safety artifacts is still lacking. This paper provides an overview of a semi-formal safety engineering approach based on SysML for specifying the relevant safety artifacts in the concept phase. Using specific diagram types, different views of the available data can be provided that reflects the specific needs of the stakeholders involved. One objective of this work is to improve the common understanding of the relevant safety aspects during the system design. The approach, which is demonstrated here from the perspective of a Tier1 supplier for an automotive battery system, covers different breakdown levels of a vehicle. The safety workflow presented here supports engineers' efforts to meet the safety standard ISO 26262 in a systematic way.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

A Numerical Investigation of Dampening Dynamic Profiles for the Application in Transient Vehicle Thermal Management Simulations

2014-04-01
2014-01-0642
As computational methodologies become more integrated into industrial vehicle pre-development processes the potential for high transient vehicle thermal simulations is evident. This can also been seen in conjunction with the strong rise in computing power, which ultimately has supported many automotive manufactures in attempting non-steady simulation conditions. The following investigation aims at exploring an efficient means of utilizing the new rise in computing resources by resolving high time-dependent boundary conditions through a series of averaging methodologies. Through understanding the sensitivities associated with dynamic component temperature changes, optimised boundary conditions can be implemented to dampen irrelevant input frequencies whilst maintaining thermally critical velocity gradients.
Journal Article

An Innovative Approach to Race Track Simulations for Vehicle Thermal Management

2013-11-20
2013-01-9121
Within the pre-development phase of a vehicle validation process, the role of computational simulation is becoming increasingly prominent in efforts to ensure thermal safety. This gain in popularity has resulted from the cost and time advantages that simulation has compared to experimental testing. Additionally many of these early concepts cannot be validated through experimental means due to the lack of hardware, and must be evaluated via numerical methods. The Race Track Simulation (RTS) can be considered as the final frontier for vehicle thermal management techniques, and to date no coherent method has been published which provides an efficient means of numerically modeling the temperature behavior of components without the dependency on statistical experimental data.
Technical Paper

A Combined Computational-Experimental Approach for Modelling of Coupled Vibro-Acoustic Problems

2013-05-13
2013-01-1997
Over the past 30 years, the computer-aided engineering (CAE) tools have been applied extensively in the automotive industry. In order to accelerate time-to-market while coping with legal limits that have become increasingly restrictive over the last decades, CAE has become an indispensable tool covering all major fields in a modern automotive product design process. However, when tackling complex real-life engineering problems, the computational models might become rather involved and thus less efficient. Therefore, the overall trend in the automotive industry is currently heading towards combined approaches, which allow the best of the both worlds, namely the experimental measurement and numerical simulation, to be merged into one integrated scheme. In this paper, the so-called patch transfer function (PTF) approach is adopted to solve coupled vibro-acoustic problems. In the PTF scheme, the interfaces between fluid and structure are discretised in terms of patches.
Journal Article

Psychoacoustic Requirements for Warning Sounds of Quiet Cars

2012-06-13
2012-01-1522
According to upcoming legislative regulations in certain countries, electric and hybrid-electric vehicles (EVs and HEVs) will have to be equipped with devices to compensate for the lack of engine noise needed to warn pedestrians against the vehicles. This leads to the question of appropriate sound design which has to meet specific psychoacoustic requirements. The present paper focuses on auditory features of warning sounds to enhance pedestrians' safety with a major focus on the detectability of the exterior noise of the vehicle in an ambient noise. For the evaluation of detectability, the psychoacoustic model developed by Kerber and Fastl will be introduced allowing for the prediction of masked thresholds of the approaching vehicle. The instrumental assessment yields estimates of the distance of an approaching vehicle at the point it becomes audible to the pedestrians.
Technical Paper

Aerodynamic Performance Assessment of BMW Validation Models using Computational Fluid Dynamics

2012-04-16
2012-01-0297
Aerodynamic performance assessment of automotive shapes is typically performed in wind tunnels. However, with the rapid progress in computer hardware technology and the maturity and accuracy of Computational Fluid Dynamics (CFD) software packages, evaluation of the production-level automotive shapes using a digital process has become a reality. As the time to market shrinks, automakers are adopting a digital design process for vehicle development. This has elevated the accuracy requirements on the flow simulation software, so that it can be used effectively in the production environment. Evaluation of aerodynamic performance covers prediction of the aerodynamic coefficients such as drag, lift, side force and also lift balance between the front and rear axle. Drag prediction accuracy is important for meeting fuel efficiency targets, prediction of front and rear lifts as well as side force and yawing moment are crucial for high speed handling.
Technical Paper

Measuring Near Zero Automotive Exhaust Emissions - Zero Is a Very Small Precise Number

2010-04-12
2010-01-1301
In the environmentally conscious world we live in, auto manufacturers are under extreme pressure to reduce tailpipe emissions from cars and trucks. The manufacturers have responded by creating clean-burning engines and exhaust treatments that mainly produce CO2 and water vapor along with trace emissions of pollutants such as CO, THC, NOx, and CH4. The trace emissions are regulated by law, and testing must be performed to show that they are below a certain level for the vehicle to be classified as road legal. Modern engine and pollution control technology has moved so quickly toward zero pollutant emissions that the testing technology is no longer able to accurately measure the trace levels of pollutants. Negative emission values are often measured for some pollutants, as shown by results from eight laboratories independently testing the same SULEV automobile.
Technical Paper

Virtual Validation of Assembly Processes with Digital Human Models — Optimizing the Human-Computer Interaction

2008-06-17
2008-01-1901
Today digital 3D human models are widely used to support the development of future products and in planning and designing production systems. However, these virtual models are generally not sufficiently intuitive and configuring accurate and real body postures is very time consuming. Furthermore, additionally using a human model to virtually examine manual assembly operations of a vehicle is currently synonymous with increased user inputs. In most cases, the user is required to have in-depth expertise in the deployed simulation system. In view of the problems described, in terms of human-computer interaction, it is essential to research and identify the requirements for simulation with digital human models. To this end, experienced staff members gathered the requirements which were then evaluated and weighted by the potential user community. Weaknesses of the simulation software will also be detected, permitting optimisation recommendations to be identified.
Technical Paper

Contemporary Crash Analysis as a Building Block in Holistic Multidisciplinary Structural Analysis

2008-04-14
2008-01-1127
The trend in the previous years showed that an ideal product is not obtained as a sum of development results of several separated disciplines but rather as a result of a holistic multidisciplinary CAE approach. In the course of the whole component development process it is necessary to consider all functions of an individual component equivalent to their importance in the system as a whole, in order to achieve both a technical and a financial optimum. The predictability and the accuracy of an individual computational method have to be regarded against the background of the entire simulation process. A continuative CAE-standard and a harmonious interaction between the different computational disciplines promise more success than focusing specifically on individual topics and thereby neglecting the “bigger picture”. This awareness provided the basis for a decision to change the entire crash simulation software to ABAQUS.
Technical Paper

Enhancing Navigation Systems with Quality Controlled Traffic Data

2008-04-14
2008-01-0200
As the popularity of vehicle navigation systems rises, incorporating Real Time Traffic Information (RTTI) has been shown to enhance the systems' value by helping drivers avoid traffic delays. As an innovative premium automaker, BMW has developed a testing process to acquire and analyze RTTI data in order to ensure delivery of a high quality service and to enhance the customer experience compared to audible broadcast services. With a methodology to obtain valid and repeatable RTTI data quality measurements, BMW and its service partner, Clear Channel's Total Traffic Network (TTN), can improve its offered service over time, implement corrective measures when appropriate, and confidently ensure the service meets its premium objectives. BMW has partnered with TTN and SoftSolutions GmbH to implement a traffic data quality process and software tools.
Technical Paper

Experimental Analysis of the Underbody Pressure Distribution of a Series Vehicle on the Road and in the Wind Tunnel

2008-04-14
2008-01-0802
Underbody aerodynamics has become increasingly important over the last three decades because of its vital contribution to improving a vehicle's overall performance. This was the motivation for the research conducted by BMW Aerodynamics, concerning the determination of the overall pressure distribution on the underbody of a series-production vehicle. Static pressure measurements have been taken under various test conditions. Real on-road tests were carried out as well as wind tunnel experiments under application of different road simulation techniques. The analyzed vehicle configurations include wheel rim-tire and body modifications. The results presented include surface pressure data, drag and lift coefficients, ride heights, pitch and roll angles. The acquired data is used to examine the underbody flow topology and determine how the diverse attempts to represent the real on-road conditions affect its pressure distribution.
X