Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

System Level Design Simulation to Predict Passive Safety Performance for CFRP Automotive Structures

2013-04-08
2013-01-0663
Despite increasingly stringent crash requirements, the body structures of future mainstream production cars need to get lighter. Carbon fiber reinforced polymer (CFRP) composites with a density 1/5th of steel and very high specific energy absorption represent a material technology where substantial mass can be saved when compared to traditional steel applications. BMW have addressed the demanding challenges of producing several hundred composite Body-in-White (BIW) assemblies a day and are committed to significant adoption of composites in future vehicle platforms, as demonstrated in the upcoming i3 and i8 models. A next step to further integrate composites into passenger cars is for primary structural members, which also perform critical roles in passive safety by absorbing large amounts of energy during a crash event.
Technical Paper

Springback Elimination in Structural Components by Means of Electromagnetic Forming

2009-04-20
2009-01-0803
Looking for car weight reduction related to the use of High Strength Steels (HSS) for manufacturing body-in-white components, an innovative application of the high velocity forming techniques has been developed: the Electro Magnetic (EM) calibration and elimination of the spring-back effect (sidewall curl) of High Strength Steel U-channels. Within this paper the initial tests on L and U-shaped parts will be presented. Being the mechanical stiffness the main parameter for improving the coil endurance, the prediction of the coil strains under EM forces is a basic issue, which has been addressed within this study.
Journal Article

Mechanical Property Evaluation of Permanent-Mould Cast AM-SC1™ Mg-Alloy

2008-04-14
2008-01-0375
AM-SC1™ is a high temperature Mg alloy that was originally developed as a sand casting alloy for automotive powertrain applications. The alloy has been selected as the engine block material for both the AVL Genios LE and the USCAR lightweight magnesium engine projects. The present work assesses the potential of this alloy for permanent-mould die cast applications. Thermo-physical and mechanical properties of AM-SC1 were determined for material derived from a permanent-mould die casting process. The mechanical properties determined included: tensile, creep, bolt load retention/relaxation and both low and high cycle fatigue. To better assess the creep performance, a comparative analysis of the normalized creep properties was carried out using the Mukherjee-Dorn parameter, which confirmed the high viscoplastic performance of AM-SC1 compared with common creep resistant high pressure die cast (HPDC) Mg-alloys.
Journal Article

An Approach to Model Sheet Failure After Onset of Localized Necking in Industrial High Strength Steel Stamping and Crash Simulations

2008-04-14
2008-01-0503
In large-scale industrial simulations the numerical prediction of fracture in sheet metal forming operations as well as in crash events is still a challenging task of high social and economic relevance. Among several approaches presented in literature, the authors and their colleagues developed a model which accounts each for three different mechanisms leading finally to fracture in thin sheet metals: the local instability (necking), ductile normal fracture and ductile shear fracture. The focus of this paper is to develop and validate a new approach to improve the predictive capabilities for fracture triggered by localized necking for a wide variety of steel grades. It is well known that after the onset of a local instability additional strain is still necessary to induce fracture. In a numerical simulation using shell elements this post instability strain becomes of increasing importance when the ratio of the characteristic shell element edge length to its thickness decreases.
Technical Paper

Reinforced Light Metals for Automotive Applications

2007-04-16
2007-01-1228
Efficiency and dynamic behavior of a vehicle are strongly affected by its weight. Taking into consideration comfort, safety and emissions in modern automobiles, lightweight design is more of a challenge than ever in automotive engineering. Materials development plays an important role against this background, since significant weight decrease is made possible through the substitution of high density materials and more precise adjustment of material parameters to the functional requirements of components. Reinforced light metals, therefore, offer a promising approach due to their high strength to weight ratio. The paper gives an overview on matrix and reinforcement structures suited for the high volume output of the automotive industry. Further analytical and numerical approaches to describe the strengthening effects and the good mechanical characteristics of these composite materials are presented.
Technical Paper

The European Union Mg-Engine Project - Generation of Material Property Data for Four Die Cast Mg-Alloys

2006-04-03
2006-01-0070
A specific objective of the European Mg-Engine project is to qualify at least two die cast Mg alloys with improved high temperature properties, in addition to satisfactory corrosion resistance, castability and costs. This paper discusses the selection criteria for high temperature alloys leading to four candidate alloys, AJ52A, AJ62A, AE44 and AE35. Tensile-, creep- and fatigue testing of standard die cast test specimens at different temperatures and conditions have led to a very large amount of material property data. Numerous examples are given to underline the potential for these alloys in high temperature automotive applications. The subsequent use of the basic property data in material models for design of automotive components is illustrated.
Technical Paper

Light Weight Engine Construction through Extended and Sustainable Use of Mg-Alloys

2006-04-03
2006-01-0068
Eight partners from Europe and one from North America have joined efforts in a EU-supported project to find new ways for sustainable production of Mg-based engine blocks for cars. The ultimate aim of the work is to reduce vehicle weight, thereby reducing fuel consumption and CO2 emissions from operation of the vehicle. Four new magnesium alloys are considered in the project and an engine block has been series cast - 20 each in two alloys. An extensive mechanical testing program has been initiated to identify in particular the high temperature limits of the four alloys and a significant experimental study of proper bolt materials for joining is being done in parallel. Engine redesign and life cycle analysis has also been completed to secure the future sustainable exploitation of the project results. This paper presents an overview of the work and results obtained until now - 3 months before the ending date of the project.
Technical Paper

Cylinder Heads for High Power Gasoline Engines - Thermomechanical Fatigue Life Prediction

2006-04-03
2006-01-0541
Increasing demands on engine efficiency and specific power have resulted in progressively higher loadings on internal components of combustion engines. Therefore the durability assessment of such components is increasingly in demand, triggered by both reliability and economic requirements. Within this context the TMF cylinder head simulation process established at BMW is presented in the following article. The numerical model is able to account for thermo-mechanical loading histories. These lead to a transient evolution of the material characteristics during the lifetime due to aging in aluminum alloys. Therefore a viscoplastic constitutive model is coupled with an aging model to handle the change in precipitation structure and the effect on the material properties, especially for non heat-treated secondary aluminum alloys. The local damage evolution is modeled based on the growth of micro cracks.
Technical Paper

BMW's Magnesium-Aluminium Composite Crankcase, State-of-the-Art Light Metal Casting and Manufacturing

2006-04-03
2006-01-0069
This paper presents new aspects of the casting and manufacturing of BMWs inline six-cylinder engine. This new spark-ignition engine is the realization of the BMW concept of efficient dynamics at high technological level. For the first time in the history of modern engine design, a water-cooled crankcase is manufactured by magnesium casting for mass production. This extraordinary combination of magnesium and aluminium is a milestone in engine construction and took place at the light-metal foundry at BMW's Landshut plant. This paper gives a close summary about process development, the constructive structure, and the manufacturing and testing processes.
Technical Paper

AJ (Mg-Al-Sr) Alloy Mechanical Properties: From Fatigue to Crack Propagation

2005-04-11
2005-01-0729
In addition to the creep properties, the fatigue properties are essential for the design of a power-train component in Mg which is operated at elevated temperatures. In case of the new BMW I6 composite Mg/Al crankcase using the AJ alloy system, material testing focused on both subjects. The basic mechanical properties were determined from separately die cast samples and also from samples machined out from high-pressure die cast components. Tensile, high cycle fatigue properties, low cycle fatigue and crack propagation properties were established and analyzed within the technical context for power-train applications reflected in the temperature and load levels. The aspects of mean stress influence, notch sensitivity and crack propagation are evaluated to estimate the performances of the AJ62A alloy system.
Technical Paper

Effect of HPDC Parameters on the Performance of Creep Resistant Alloys MRI153M and MRI230D

2005-04-11
2005-01-0334
The growing demand for the use of magnesium alloys in the production of automotive powertrain components led to the development of creep resistant diecasting alloys MRI153M and MRI230D. The present paper addresses the main high-pressure die casting parameters, which significantly affect the performance of components, produced of these new alloys. A systematic study was carried out in order to correlate die-casting parameters to the performance of new alloys. The results obtained clearly indicated that optimization of molten metal and die temperatures, injection profile parameters and lubrication mixtures allowed to improve the die castability and service properties of the new alloys and produce high performance components with intricate geometry. This was manifested by production of several practical demonstrators such as gearboxes, oil pans, oil pumps and crankcases.
Technical Paper

AJ (Mg-Al-Sr) Alloy System Used for New Engine Block

2004-03-08
2004-01-0659
AJ alloy is used with a new Aluminum-Magnesium Composite Design, which is an innovative approach to lightweight crankcase technology. The component is manufactured using high pressure die cast process. A wide range of chemical compositions was used to develop a good understanding of the behavior of this alloy system (castability, thermophysical, mechanical, microstructure). The basic mechanical properties were determined from separately die cast samples and also from samples machined out from high pressure die cast components. Tensile, creep, bolt load retention/relaxation and high cycle fatigue properties were established and analyzed using multivariate analysis and statistical approach. This methodology was used to select the optimal chemical composition to match the requirements. The sensitivity of the alloy to heat exposure was investigated for both mechanical properties and microstructure.
Technical Paper

High Temperature Mg Alloys for Sand and Permanent Mold Casting Applications

2004-03-08
2004-01-0656
The need to reduce weight of large and heavy components used by the automotive and aerospace industries such as engine block, cylinder head cover and helicopter gearbox housing has led to the development of new Mg gravity casting alloys that provide adequate properties and cost effective solution. The new Mg gravity casting alloys are designed for high stressed components that operate at a temperature up to 300°C. These new alloys exhibit excellent mechanical properties and creep resistance in T-6 conditions. The present paper aims at introducing three new Mg gravity casting alloys designated MRI 201S, MRI 202S and MRI 203S, which were recently developed by the Magnesium Research Institute of DSM and VW. Apart from the excellent high temperature performance of these alloys, they provide adequate castability and dimension stability along with good weldability and corrosion resistance.
Technical Paper

A Comparative Study of New Magnesium Alloys Developed for Elevated Temperature Applications in Automotive Industry

2003-03-03
2003-01-0191
Recently several new magnesium alloys for high temperature applications have been developed with the aim to obtain an optimal combination of die castability, creep resistance, mechanical properties, corrosion performance and affordable cost. Unfortunately, it is very difficult to achieve an adequate combination of properties and in fact, most of the new alloys can only partially meet the required performance and cost. This paper aims at evaluating the current status of the newly developed alloys for powertrain applications. The paper also addresses the complexity of magnesium alloy development and illustrates the effect of alloying elements on properties and cost. In addition, the paper presents an attempt to set the position of each alloy in the integrated space of combined properties and cost
Technical Paper

Continuos Failure Prediction Model for Nonlinear Load Paths in Successive Stamping and Crash Processes

2001-03-05
2001-01-1131
The validity of numerical simulations is still limited by the unknown failure of materials when nonlinear load paths in successive stamping and crash processes occur. Localized necking is the main mechanism for fractures in ductile sheet metal. The classical forming limit curve (FLC) is limited to linear strain paths. To include the effects of nonlinear strain paths a theoretical model for instability (algorithm CRACH) has been used. The algorithm has been developed on the basis of the Marciniak model [8]. The calibration and validation of this approach is done by a set of multistage experiments under static and dynamic strain rates for a mild steel.
Technical Paper

Advanced material technologies meeting the challenges of automotive engineering

2000-06-12
2000-05-0049
Advanced material technologies play a key role in automotive engineering. The main objective of the development of advanced material technologies for automotive applications is to promote the desired properties of a vehicle. It is characteristic of most materials in modern cars that they have been developed especially for automotive requirements. Requirements are not only set by the customer who expects the maximum in performance, comfort, reliability, and safety from a modern car. Existing legal regulations also have to be met, e.g., in the areas of environmental compatibility, resource preservation, and minimization of emissions. To achieve goals like weight reduction or increased engine performance permanent material developments are essential. In this paper, numerous examples chosen from body, suspension, and powertrain components show clearly how low weight technologies, better comfort, and high level of recyclability can be achieved by advanced material solutions.
Technical Paper

The Magnesium Hatchback of the 3-Liter Car: Processing and Corrosion Protection

2000-03-06
2000-01-1123
The hatchback of Volkswagen's 3 liter car (3 l fuel consumption per 100 km) consists of an inner component of die casting magnesium (AM50) covered with an aluminum panel from the outside. This hybrid design requires a new manufacturing process: The pre-coated magnesium part will be bonded and folded with the bare aluminum part. Corrosion protection is provided by an organic coating system which both protects against general corrosion and galvanic corrosion. The corrosion of the Al / Mg sandwich has been examined with hybrid samples which are similar to the hatchback. Several powder coatings (epoxy resin, polyester resin, hybrid resin), wet paints and cathodic electro-coating paints of different thicknesses and compositions have been applied to the magnesium part. They show that only powder coating provides adequate protection. Galvanic corrosion at the points of attachment of the hatchback might be possible (for example the bolted joint of the hinge).
Technical Paper

Crank-Angle Resolved Temperature in SI Engines Measured by Emission-Absorption Spectroscopy

1999-10-25
1999-01-3542
Crank-angle resolved, gas temperatures are determined in the combustion chamber of a Volkswagen (VW) standard-production, port-injected SI engine. During idle, two different methods are applied: (1) a direct spectroscopic emission-absorption technique at a resonance line of potassium, seeded to the air stream to generate sufficient spectral absorptance (‘colouring’ technique), and (2) a more standard, indirect method in which temperatures are derived from pressure recordings using a two-zone thermodynamic model. Combustion temperatures obtained during idle with both the spectroscopic (1) and ‘two-zone’ (2) methods are in good agreement. In addition, the spectroscopic technique is extended to transient operating conditions where the ‘two-zone’ method is not applicable. Combustion temperatures measured during cold-start and abrupt load alteration are in good agreement with former investigations.
X