Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Investigation of Real Fuels by Means of 3D-CFD Engine Simulations

2019-09-09
2019-24-0090
The reduction of both harmful emissions (CO, HC, NOx, etc.) and gases responsible for greenhouse effects (especially CO2) are mandatory aspects to be considered in the development process of any kind of propulsion concept. Focusing on ICEs, the main development topics are today not only the reduction of harmful emissions, increase of thermodynamic efficiency, etc. but also the decarbonization of fuels which offers the highest potential for the reduction of CO2 emissions. Accordingly, the development of future ICEs will be closely linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels) as they will be part of a common development process. This implies an increase in development complexity, which needs the support of engine simulations. In this work, the virtual modeling of real fuel behavior is addressed to improve current simulation capabilities in studying how a specific composition can affect the engine performance.
Technical Paper

Experimental Investigation of the Droplet Field of a Rotating Vehicle Tyre

2019-06-18
2019-01-5068
The consideration of vehicle soiling in the development process becomes ever more important because of the increasing customer demands on current vehicles and the increased use of camera and sensor systems due to autonomous driving. In the process of self-soiling, a soil-water mixture is whirled up by the rotation of the car’s own wheels and deposits on the vehicle surface. The validation of the soiling characteristics in vehicle development usually takes place in an experimental manner, but is increasingly supported by numerical simulations. The droplet field at the tyre has been investigated several times in the past. However, there are no published information regarding the physical background of the droplet formation process and the absolute droplet sizes considering the position at the tyre and the behaviour at different velocities.
Journal Article

Simulation and Its Contribution to Evaluate Highly Automated Driving Functions

2019-04-02
2019-01-0140
A key criterion for launching autonomous vehicles on real roads is the knowledge of their capability to ensure traffic safety. In contrast to ADAS, deriving this measure of safety is difficult to achieve as the functional scope of an autonomous driving function exceeds by far the one of ADAS. As a consequence, real-world testing solely is not sufficient enough to cover the required test volume. This assessment problem imposes new requirements on a valid test concept for automated driving. A possible solution represents simulation by enabling it to generate reliable test kilometers. As a first step, we discuss in this paper the feasibility of simulation frameworks to re-simulate a real-world test in certain scenarios. We will demonstrate that even with ground truth information of the vehicle odometry and corresponding environment model an acceptable accordance of functional behavior is not guaranteed.
Technical Paper

A Fluid-Structure Interaction Scheme for Prediction of Flow-Induced Low Frequency Booming Noise

2018-06-13
2018-01-1521
The analysis of the acoustic behavior of flow fields has gained importance in recent years, especially in the automotive industry. The comfort of the driver is heavily influenced by the noise levels and characteristics, especially during long distance drives. Simulation tools can help to analyze the acoustic properties of a car at an early stage of the development process. This work focuses on the low-frequency sound effects, which can be a significant noise component under certain operating conditions. As a first step in the fluid-structure interaction workflow, the flow around a series-production vehicle is simulated, including passenger cabin and underhood flow. The complexity of this model poses extensive demands on the simulation software, concerning meshing, turbulence modeling and level of parallelism. We conducted a transient simulation of the compressible fluid flow, using a hybrid RANS/LES approach.
Technical Paper

From Theory to Three-Dimensional Finite Element Models: An Innovative Method for Validation

2018-06-13
2018-01-1536
As a key part of numerical analysis, the modeling process has a tremendous influence on the quality of the results. While there is general awareness concerning uncertainties that arise during modeling, their quantity and sensitivity rarely are known. Hence, modeling quickly can become inaccurate and inefficient. The scope of the present paper is to innovate predictive modeling processes concerning the dynamics of real complex structures by means of linear modal analysis with the finite element method (FEM). The aim is to offer a transparent design catalog relating specific uncertainties to each model component in order to achieve error prevention for engineers dealing with comparable systems. A complex system is simplified and investigated for different levels of detail. Only after the model uncertainties for one level of detail are obtained, the next level of complexity is approached.
Technical Paper

Frequency and Temperature Dependent Stiffness and Damping Properties of Reduced Viscoelastic Structures Using Component Mode Synthesis (CMS)

2018-06-13
2018-01-1498
Model Order Reduction (MOR) methods such as Component Mode Synthesis (CMS) have been used in order to simulate large linear dynamic systems for many years and have reached a considerable level of saturation. These reduction methods have many advantages such as minimizing computational costs but also have restrictions. One of their disadvantages is that material damping characteristics can only be defined in form of Rayleigh damping. Another disadvantage is that the reduced order model can only represent one state of the structure determined in the generation process of the reduced matrices. In this paper we present a way to consider material damping in reduced matrices that contain one or more materials having different damping characteristics without the disadvantages of using Rayleigh damping.
Technical Paper

Motion Cueing Algorithm for a 9 DoF Driving Simulator: MPC with Linearized Actuator Constraints

2018-04-03
2018-01-0570
In times when automated driving is becoming increasingly relevant, dynamic simulators present an appropriate simulation environment to faithfully reproduce driving scenarios. A realistic replication of driving dynamics is an important criterion to immerse persons in the virtual environments provided by the simulator. Motion Cueing Algorithms (MCAs) compute the simulator’s control input, based on the motions of the simulated vehicle. The technical restrictions of the simulator’s actuators form the main limitation in the execution of these input commands. Typical dynamic simulators consist of a hexapod with six degrees of freedom (DoF) to reproduce the vehicle motion in all dimensions. Since its workspace dimensions are limited, significant improvements in motion capabilities can be achieved by expanding the simulator with redundant DoF by means of additional actuators.
Journal Article

In-Cylinder LIF Imaging, IR-Absorption Point Measurements, and a CFD Simulation to Evaluate Mixture Formation in a CNG-Fueled Engine

2018-04-03
2018-01-0633
Two optical techniques were developed and combined with a CFD simulation to obtain spatio-temporally resolved information on air/fuel mixing in the cylinder of a methane-fueled, fired, optically accessible engine. Laser-induced fluorescence (LIF) of anisole (methoxybenzene), vaporized in trace amounts into the gaseous fuel upstream of the injector, was captured by a two-camera system, providing one instantaneous image of the air/fuel ratio per cycle. Broadband infrared (IR) absorption by the methane fuel itself was measured in a small probe volume via a spark-plug integrated sensor, yielding time-resolved quasi-point information at kHz-rates. The simulation was based on the Reynolds-averaged Navier-Stokes (RANS) approach with the two-equation k-epsilon turbulence model in a finite volume discretization scheme and included the port-fuel injection event. Commercial CFD software was used to perform engine simulations close to the experimental conditions.
Journal Article

The Thermodynamics of Exhaust Gas Condensation

2017-06-29
2017-01-9281
Water vapor is, aside from carbon dioxide, the major fossil fuel combustion by-product. Depending on its concentration in the exhaust gas mixture as well as on the exhaust gas pressure, its condensation temperature can be derived. For typical gasoline engine stoichiometric operating conditions, the water vapor dew point lies at about 53 °C. The exhaust gas mixture does however contain some pollutants coming from the fuel, engine oil, and charge air, which can react with the water vapor and affect the condensation process. For instance, sulfur trioxide present in the exhaust, reacts with water vapor forming sulfuric acid. This acid builds a binary system with water vapor, which presents a dew point often above 100 °C. Exhaust composition after leaving the combustion chamber strongly depends on fuel type, engine concept and operation point. Furthermore, the exhaust undergoes several chemical after treatments.
Journal Article

Analysis of Cycle-to-Cycle Variations of the Mixing Process in a Direct Injection Spark Ignition Engine Using Scale-Resolving Simulations

2016-11-16
2016-01-9048
Since the mechanisms leading to cyclic combustion variabilities in direct injection gasoline engines are still poorly understood, advanced computational studies are necessary to be able to predict, analyze and optimize the complete engine process from aerodynamics to mixing, ignition, combustion and heat transfer. In this work the Scale-Adaptive Simulation (SAS) turbulence model is used in combination with a parameterized lagrangian spray model for the purpose of predicting transient in-cylinder cold flow, injection and mixture formation in a gasoline engine. An existing CFD model based on FLUENT v15.0 [1] has been extended with a spray description using the FLUENT Discrete Phase Model (DPM). This article will first discuss the validation of the in-cylinder cold flow model using experimental data measured within an optically accessible engine by High Speed Particle Image Velocimetry (HS-PIV).
Technical Paper

Application of the Adjoint Method for Vehicle Aerodynamic Optimization

2016-04-05
2016-01-1615
The aerodynamic optimization of an AUDI Q5 vehicle is presented using the continuous adjoint approach within the OpenFOAM framework. All calculations are performed on an unstructured automatically generated mesh. The primal flow, which serves as input for the adjoint method, is calculated using the standard CFD process at AUDI. It is based on DES calculations using a Spalart-Allmaras turbulence model. The transient results of the primal solution are time averaged and fed to a stationary adjoint solver using a frozen turbulence assumption. From the adjoint model, drag sensitivity maps are computed and measures for drag reduction are derived. The predicted measures are compared to CFD simulations and to wind tunnel experiments at 1:4 model scale. In this context, general challenges, such as convergence and accuracy of the adjoint method are discussed and best practice guidelines are demonstrated.
Journal Article

Further Investigations on the Flow Around a Rotating, Isolated Wheel with Detailed Tread Pattern

2015-04-14
2015-01-1554
Efforts in aerodynamic optimization of road vehicles have been steadily increasing in recent years, mainly focusing on the reduction of aerodynamic drag. Of a car's total drag, wheels and wheel houses account for approx. 25 percent. Consequently, the flow around automotive wheels has lately been investigated intensively. Previously, the authors studied a treaded, deformable, isolated full-scale tire rotating in contact with the ground in the wind tunnel and using the Lattice-Boltzmann solver Exa PowerFLOW. It was shown that applying a common numerical setup, with velocity boundary condition prescribed on the tread, significant errors were introduced in the simulation. The contact patch separation was exaggerated and the flow field from wind tunnel measurements could not be reproduced. This investigation carries on the work by examining sensitivities and new approaches in the setup.
Technical Paper

Experimental Investigation of the Primary Spray Development of GDI Injectors for Different Nozzle Geometries

2015-04-14
2015-01-0911
The optimization of the mixture formation represents great potential to decrease fuel consumption and emissions of spark-ignition engines. The injector and the nozzle are of major importance in this concern. In order to adjust the nozzle geometry according to the requirements an understanding of the physical transactions in the fuel spray is essential. In particular, the primary spray break-up is still described inadequately due to the difficult accessibility with optical measuring instruments. This paper presents a methodology for the characterization of the nozzle-near spray development, which substantially influences the entire spray shape. Single hole injectors of the gasoline direct injection (GDI) with different nozzle hole geometries have been investigated in a high pressure chamber by using the MIE scattering technique. To examine the spray very close to the nozzle exit a long-distance microscope in combination with a Nd:YAG-laser was used.
Technical Paper

Patch Transfer Function Approach for Analysis of Coupled Vibro-Acoustic Problems Involving Porous Materials

2014-06-30
2014-01-2092
In many application fields, such as automotive and aerospace, the full FE Biot model has been widely applied to vibro-acoustics problems involving poro-elastic materials in order to predict their structural and acoustic performance. The main drawback of this approach is however the large computational burden and the uncertainty of the input data (Biot parameters) that may lead to less accurate prediction. In order to overcome these disadvantages industry is asking for more efficient techniques. The vibro-acoustic behaviour of structures coupled with poroelastic trims and fluid cavities can be predicted by means of the Patch Transfer Function (PTF) approach. The PTF is a sub-structuring procedure that allows for coupling different sub-systems via impedance relations determined at their common interfaces. The coupling surfaces are discretised into elementary areas called patches.
Journal Article

The Development of Turbine Volute Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations: Part 3: Exhaust Radial Turbine Volute Systems

2014-04-01
2014-01-0648
Modern exhaust systems contain not only a piping network to transport hot gas from the engine to the atmosphere, but also functional components such as the catalytic converter and turbocharger. The turbocharger is common place in the automotive industry due to their capability to increase the specific power output of reciprocating engines. As the exhaust system is a main heat source for the under body of the vehicle and the turbocharger is located within the engine bay, it is imperative that accurate surface temperatures are achieved. A study by K. Haehndel [1] implemented a 1D fluid stream as a replacement to solving 3D fluid dynamics of the internal exhaust flow. To incorporate the 3D effects of internal fluid flow, augmented Nusselt correlations were used to produce heat transfer coefficients. It was found that the developed correlations for the exhaust system did not adequately represent the heat transfer of the turbocharger.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Technical Paper

The Development of Exhaust Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations Part 2 - Exhaust Acoustic Silencer Configurations

2014-04-01
2014-01-0646
At the rear of the vehicle an end acoustic silencer is attached to the exhaust system. This is primarily to reduce noise emissions for the benefit of passengers and bystanders. Due to the location of the end acoustic silencer conventional thermal protection methods (heat shields) through experimental means can not only be difficult to incorporate but also can be an inefficient and costly experience. Hence simulation methods may improve the development process by introducing methods of optimization in early phase vehicle design. A previous publication (Part 1) described a methodology of improving the surface temperatures prediction of general exhaust configurations. It was found in this initial study that simulation results for silencer configurations exhibited significant discrepancies in comparison to experimental data.
Technical Paper

A Numerical Investigation of Dampening Dynamic Profiles for the Application in Transient Vehicle Thermal Management Simulations

2014-04-01
2014-01-0642
As computational methodologies become more integrated into industrial vehicle pre-development processes the potential for high transient vehicle thermal simulations is evident. This can also been seen in conjunction with the strong rise in computing power, which ultimately has supported many automotive manufactures in attempting non-steady simulation conditions. The following investigation aims at exploring an efficient means of utilizing the new rise in computing resources by resolving high time-dependent boundary conditions through a series of averaging methodologies. Through understanding the sensitivities associated with dynamic component temperature changes, optimised boundary conditions can be implemented to dampen irrelevant input frequencies whilst maintaining thermally critical velocity gradients.
Journal Article

An Innovative Approach to Race Track Simulations for Vehicle Thermal Management

2013-11-20
2013-01-9121
Within the pre-development phase of a vehicle validation process, the role of computational simulation is becoming increasingly prominent in efforts to ensure thermal safety. This gain in popularity has resulted from the cost and time advantages that simulation has compared to experimental testing. Additionally many of these early concepts cannot be validated through experimental means due to the lack of hardware, and must be evaluated via numerical methods. The Race Track Simulation (RTS) can be considered as the final frontier for vehicle thermal management techniques, and to date no coherent method has been published which provides an efficient means of numerically modeling the temperature behavior of components without the dependency on statistical experimental data.
Technical Paper

A Combined Computational-Experimental Approach for Modelling of Coupled Vibro-Acoustic Problems

2013-05-13
2013-01-1997
Over the past 30 years, the computer-aided engineering (CAE) tools have been applied extensively in the automotive industry. In order to accelerate time-to-market while coping with legal limits that have become increasingly restrictive over the last decades, CAE has become an indispensable tool covering all major fields in a modern automotive product design process. However, when tackling complex real-life engineering problems, the computational models might become rather involved and thus less efficient. Therefore, the overall trend in the automotive industry is currently heading towards combined approaches, which allow the best of the both worlds, namely the experimental measurement and numerical simulation, to be merged into one integrated scheme. In this paper, the so-called patch transfer function (PTF) approach is adopted to solve coupled vibro-acoustic problems. In the PTF scheme, the interfaces between fluid and structure are discretised in terms of patches.
X