Refine Your Search

Topic

Search Results

Technical Paper

Understanding Catalyst Overheating Protection (COP) as a Source of Post-TWC Ammonia Emissions from Petrol Vehicle

2022-08-30
2022-01-1032
TWC exposure to extreme temperature could result in irreversible damage or thermal failure. Thus, a strategy embedded in the engine control unit (ECU) called catalyst overheating protection (COP) will be activated to prevent TWC overheating. When COP is activated, the command air-fuel ratio will be enriched to cool the catalyst monolith down. Fuel enrichment has been proven a main prerequisite for ammonia formation in hot TWCs as a by-product of NOx reduction. Hence, COP events could theoretically be a source of post-catalyst ammonia from petrol vehicles, but this theory is yet to be confirmed in published literature. This paper validated this hypothesis using a self-programmed chassis-level test. The speed of the test vehicle was set to constant while the TWC temperature was raised stepwise until a COP event was activated.
Technical Paper

Research on Performance of Pulsed Twin-Fluid Injector and Its Application on a Spark Ignition UAV Engine

2021-04-06
2021-01-0651
The principal objective of the present work is to investigate the fundamental characteristics of a commercially available outwardly opening twin-fluid injector, which utilizes air-assisted atomization principle to attain pulse-type injection of fuel-air mixture. The electromagnetic characteristics of this injector were simulated and the effects of dominating parameters on the electromagnetic force to drive injector were ascertained. On that basis, this paper elaborates on the fundamental characteristics of air-assisted spray using gasoline and kerosene with the employment of two types of optical testing techniques. The spray morphological evolution under varied fuel injection durations and ambient pressures were captured with high-speed shadowgraph thus the corresponding external macroscopic characteristics were obtained and further compared. Spray droplet velocity and diameter at fixed monitoring location were measured by using PDPA (Phase Doppler Particle Analyzer).
Technical Paper

Comparative Research on Emission Characteristic and Combustion Characteristic of Gasoline Direct Injection and Port Fuel Injection for Free-Piston Linear Generator

2020-09-15
2020-01-2220
As a new type of energy, free-piston linear generator (FPLG) attracts more research on its stable operation and power performance, while less on its combustion and emission performance. So, in this paper, the emission characteristics of FPLG in two different modes are studied through a port fuel injection (PFI) mode which was verified by the experiment and a gasoline direct injection (GDI) mode. The results showed that: both the GDI mode and the PFI mode produced large amounts of nitrogen oxide (NOx) during the working process. But the GDI mode produced before the PFI mode and it produced nearly 2 times than the PFI mode. However, the formation rate of NOx in GDI mode is much lower than that in PFI mode. Meanwhile, in both modes, 90% of NOX was generated in the cylinder at the temperature higher than 1750K, and only about 10% of NOX was generated at a temperature lower than 1750K.
Technical Paper

Investigation on the Deformation of Injector Components and Its Influence on the Injection Process

2020-04-14
2020-01-1398
The deformation of injector components cannot be disregarded as the pressure of the system increases. Deformation directly affects the characteristics of needle movement and injection quantity. In this study, structural deformation of the nozzle, the needle and the control plunger under different pressures is calculated by a simulation model. The value of the deformation of injector components is calculated and the maximum deformation location is also determined. Furthermore, the calculated results indicates that the deformation of the control plunger increases the control chamber volume and the cross-section area between the needle and the needle seat. A MATLAB model is established to The influence of structural deformation on needle movement characteristics and injection quantity is investigate by a numerical model. The results show that the characteristic points of needle movement are delayed and injection quantity increases due to the deformation.
Technical Paper

Numerical Simulation and Optimization for Combustion of an Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle (UAV)

2020-04-14
2020-01-0782
An opposed piston two-stroke engine is more suitable for use in an unmanned aerial vehicle because of its small size, excellent self-balancing, stable operation, and low noise. Consequently, in this study, based on experimental data for a prototype opposed piston two-stroke engine, numerical simulation models were established using GT-POWER for 1D simulation and AVL-FIRE for 3D CFD simulation. The mesh grid and solver parameters for the numerical model of the CFD simulation were determined to guarantee the accuracy of the numerical simulation, before studying and optimizing the ventilation efficiency of the engine with different dip angles. Furthermore, the fuel spray and combustion were analyzed and optimized in details.
Technical Paper

Experimental and Kinetic Investigation of Pressure and Temperature Effects on Burning Characteristics of n-Heptane/Air/Hydrogen up to Near Lean Burn Limits

2020-04-14
2020-01-0343
Incomplete-combustion and misfire are the hurdles in internal combustion engines to run on ultra-lean mixture, whereas high thermal efficiency has been achieved at lean mixture. The burning characteristics of n-heptane with 0% and 30% hydrogen additions were studied at 393K-453K and 100kPa-300kPa up to near lean burn limits, λ=0.8-2.0. The flame appeared in spherical shape only by 37-mJ ignition energy (IE) at λ=0.8-1.5, while further lean mixture, ≥1.6, could be ignited only by 3000-mJ with the distorted flame shape. The flame buoyed in the mixture when burning velocity calculated by kinetic mechanism was equal or less than 19.83 cm/s at the initial conditions of λ=1.8, 393K and 100kPa. The thermal instability under impact of initial pressure and temperature was higher at lean mixture than at stoichiometric mixture.
Technical Paper

Effect of n-Butanol Addition on Combustion and Emission Characteristics of HTL and Diesel Blends

2020-04-14
2020-01-0393
HTL is a kind of biodiesel converted from wet biowaste via hydrothermal liquefaction (HTL), which has drawn increasing attention in recent years due to its wide range of raw materials (algae, swine manure, and food processing waste). However, from the previous experiments done in a constant volume chamber, it was observed that the presence of 20% of HTL in the blend produced as much soot as pure diesel at in chamber environment oxygen ratio of 21%, and even more soot at low oxygen ratios. It was also observed that n-butanol addition could reduce the soot emission of diesel significantly under all tested conditions. In this work, the spray and combustion characteristics of HTL and diesel blends with n-butanol added were investigated in a constant volume chamber. The in-chamber temperature and oxygen ranged from 800 to 1200 K and 21% to 13%, respectively, covering both conventional and low-temperature combustion (LTC) regimes.
Technical Paper

Macroscopic and Microscopic Characteristics of Flash Boiling Spray with Binary Fuel Mixtures

2019-04-02
2019-01-0274
Flash boiling has drawn much attention recently for its ability to enhance spray atomization and vaporization, while providing better fuel/air mixing for gasoline direct injection engines. However, the behaviors of flash boiling spray with multi-component fuels have not been fully discovered. In this study, isooctane, ethanol and the mixtures of the two with three blend ratios were chosen as the fuels. Measurements were performed with constant fuel temperature while ambient pressures were varied to adjust the superheated degree. Macroscopic and microscopic characteristics of flash boiling spray were investigated using Diffused Back-Illumination (DBI) imaging and Phase Doppler Anemometry (PDA). Comparisons between flash boiling sprays with single component and binary fuel mixtures were performed to study the effect of fuel properties on spray structure as well as atomization and vaporization processes.
Technical Paper

Spray Characteristics of Gasoline-Ethanol Fuel Blends under Flash-Boiling Conditions

2019-04-02
2019-01-0297
The spray structure and vaporization processes of flash-boiling sprays in a constant volume chamber under a wide range of superheated conditions were experimentally investigated by a high speed imaging technique. The Engine Combustion Network’s Spray G injector was used. Four fuels including gasoline, ethanol, and gasoline-ethanol blends E30 and E50 were investigated. Spray penetration length and spray width were correlated to the degree of the superheated degree, which is the ratio of the ambient pressure to saturated vapor pressure (pa/ps). It is found that parameter pa/ps is critical in describing the spray transformation under flash-boiling conditions. Three distinct stages namely the slight flash-boiling, the transition flash-boiling, and the flare flash-boiling are identified to describe the transformation of spray structures.
Technical Paper

Combustion Characteristics in a Constant Volume Chamber of Diesel Blended with HTL

2019-04-02
2019-01-0578
There are a few different ways in which biofuels can be sourced, with the most popular coming from agricultural sources. An alternative approach is to utilize biowaste. An estimated 20 million dry tons of volatile organic compounds, or biowaste, is annually deposited in US municipal wastewaters. Most of this biowaste energy content is not recovered and, as a result, the biowaste could be a massive potential source of renewable energy. Biocrude diesel is converted from wet biowaste via hydrothermal liquefaction (HTL). Three types of feedstocks (algae, swine manure, and food processing waste) were converted into biocrude oil via HTL. From the previous experiments done in an AVL 5402 single-cylinder diesel engine, it was observed that the presence of 20% of HTL in the blend performed similarly during combustion to pure diesel. By studying these mixtures in a constant volume chamber, these observations could be compared to the results in the diesel engine.
Technical Paper

Experimental and Numerical Study on the Fuel Pressure Fluctuations Aroused by the Injector for the Electronic Unit Pump System

2017-10-08
2017-01-2217
The electronic unit pump system, which is widely applied to the heavy-duty diesel engine, belongs to the pulsating high-pressure fuel injection system, and the fuel pressure fluctuations have an essential influence on the spray and combustion in the internal combustion engine. Besides, pressure fluctuations are always aroused by the motion of actuators, such as the injector or other control valves, so it is also an advantage for fault diagnosis and feedback control to ascertain the relationship between the pressure fluctuation and the motion of the actuator. In this study, experiments and 1D-simulation were carried on to investigate the fuel pressure fluctuation characteristics and their correlations with the transient motion of the needle valve in the injector.
Technical Paper

Effect of Hydrogen Volume Ratio on the Combustion Characteristics of CNG-Diesel Dual-Fuel Engine

2017-10-08
2017-01-2270
CNG-diesel dual fuel combustion mode has been regarded as a practical operation strategy because it not only can remain high thermal efficiency but also make full use of an alternative fuel, natural gas. However, it is suffering from misfire and high HC emissions under cold start and low load conditions. As known, hydrogen has high flammability. Thus, a certain proportion of hydrogen can be added in the natural gas (named HCNG) to improve combustion performance. In this work, the effect of hydrogen volume ratio on combustion characteristics was investigated on an optically accessible single-cylinder CNG-diesel engine using a Phantom v7.3 color camera. HCNG was compressed into the tank under different hydrogen volume ratios varied from 0% to 30%, while the energy substitution rate of` HCNG remained at 70%.
Technical Paper

Experimental Study on the Effects of Intake Parameters on Diesel LTC Combustion and Emission

2017-10-08
2017-01-2259
The diesel low temperature combustion (LTC) can keep high efficiency and produce low emission. Which has been widely studied at home and abroad in recent years. The combustion control parameters, such as injection pressure, injection timing, intake oxygen concentration, intake pressure, intake temperature and so on, have an important influence on the combustion and emission of diesel LTC. Therefore, to realize different combustion modes and combustion mode switch of diesel engine, it is necessary to accurately control the injection parameters and intake parameters of diesel engine. In this work, experimental study has been carried out to analyze the effect of intake oxygen concentration, intake pressure and intake temperature in combustion and emission characteristics of diesel LTC, such as in-cylinder pressure, temperature, heat release rate, NOx and soot emission.
Technical Paper

A Cylinder Pressure Correction Method Based on Calculated Polytropic Exponent

2017-10-08
2017-01-2252
The acquisition of more authentic cylinder pressure data is the basis of engine combustion analysis. Due to the multiple advantages, quartz piezoelectric pressure transducers are generally applied to the measurement of the cylinder pressure. However, these transducers can only produce dynamic cylinder pressure data which may be significantly different from the actual values. Thus, the cylinder pressure data need to be corrected through a certain method, while different cylinder pressure correction methods will cause result divergences of the combustion analysis. This paper aims to acquire a proper cylinder pressure correction method by carrying out theoretical analysis based on the polytropic process in the compression stroke as well as the experimental research of the cylinder pressure of a turbocharged eight-cylinder diesel engine.
Technical Paper

Design and Optimization of Injector Based on Voice Coil Motor

2017-10-08
2017-01-2301
The electronic control of direct injection fuel system, which could improve engine fuel efficiency, dynamics and engine emission performance through good atomization, precise control of fuel injection time and improvement of fuel-gas mixture, is the key technology to achieve the stratified combustion and lean combustion. In this paper, a direct injection injector that based on voice coil motor was designed aiming at the technical characteristics of one 800cc two-stroke cam-less engine. Prior to a one - dimensional simulation model of injector was established by AMEsim and the maximal fuel injection demand was met via the optimization of the main parameters of the injector, the structure of the voice coil motor was optimized by magnetic equivalent circuit method. After that, the maximal flow rate of the injector was verified by the injector bench test while the atomization characteristic of the injector was verified by using a high-speed camera.
Technical Paper

Comparison Study on Combustion and Emission Characteristics of ABE/IBE-Diesel Blends in a Common-Rreail Diesel Engine

2017-10-08
2017-01-2321
Bio-butanol has been considered as a promising alternative fuel for internal combustion engines due to its advantageous physicochemical properties. However, the further development of bio-butanol is inhibited by its high recovery cost and low production efficiency. Hence, the goal of this study is to evaluate two upstream products from different fermentation processes of bio-butanol, namely acetone-butanol-ethanol (ABE) and isopropanol-butanol-ethanol (IBE), as alternative fuels for diesel. The experimental comparison is conducted on a single-cylinder and common-rail diesel engine under various main injection timings (MIT) and equivalent engine load (EEL) conditions. The experimental results show that ABE and IBE significantly affect the combustion phasing. The start of combustion (SOC) is retarded when ABE and IBE are mixed with diesel. Furthermore, the ABE/IBE-diesel blends are more sensitive to the changes in MIT compared with that of pure diesel.
Technical Paper

An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine

2017-03-28
2017-01-0755
Dual-fuel combustion combining a premixed charge of compressed natural gas (CNG) and a pilot injection of diesel fuel offer the potential to reduce diesel fuel consumption and drastically reduce soot emissions. In this study, dual-fuel combustion using methane ignited with a pilot injection of No. 2 diesel fuel, was studied in a single cylinder diesel engine with optical access. Experiments were performed at a CNG substitution rate of 70% CNG (based on energy) over a wide range of equivalence ratios of the premixed charge, as well as different diesel injection strategies (single and double injection). A color high-speed camera was used in order to identify and distinguish between lean-premixed methane combustion and diffusion combustion in dual-fuel combustion. The effect of multiple diesel injections is also investigated optically as a means to enhance flame propagation towards the center of the combustion chamber.
Technical Paper

A General Selection Method for the Compressor of the Hydrogen Internal Combustion Engine with Turbocharger

2017-03-28
2017-01-1025
Hydrogen is a promising energy carrier because it is characterized by a fast combustion velocity, a wide range of sources, and clean combustion products. A hydrogen internal combustion engine (H2ICE) with a turbocharger has been used to solve the contradiction of power density and control NOx. However, the selection of a H2ICE compressor with a turbocharger is very different from traditional engines because of gas fuel. Hydrogen as a gas fuel has the same volume as its cylinder and thus increases pressure and reduces the mass flow rate of air in cylinder for a port fuel injection-H2ICE (PFI-H2ICE). In this study, a general method involving a H2ICE with a turbocharger is proposed by considering the effect of hydrogen on cylinders. Using this method, we can calculate the turbocharged pressure ratio and mass flow rate of air based on the target power and general parameters. This method also provides a series of intake temperatures of air before calculation to improve accuracy.
Technical Paper

Calculations and Test Measurements of In-Cylinder Combustion Velocity of Hydrogen - Air Mixtures Considering the Effect of Flame Instability

2017-03-28
2017-01-0780
The combustion characteristics of hydrogen-air mixtures have significance significant impact on the performance and control of hydrogen-fueled internal combustion engines and the combustion velocity is an important parameter in characterizing the combustion characteristics of the mixture. A four-cylinder hydrogen internal combustion engine was used to study hydrogen combustion; the combustion characteristics of a hydrogen mixture were experimentally studied in a constant-volume incendiary bomb, and the turbulent premixed combustion characteristics of hydrogen were calculated and analyzed. Turbulent hydrogen combustion comes under the folded laminar flame model. The turbulent combustion velocity in lean hydrogen combustion is related not only to the turbulent velocity and the laminar burning velocity, but also to the additional turbulence term caused by the instability of the flame.
Technical Paper

Design Approach and Dimensionless Analysis of a Differential Driving Hydraulic Free Piston Engine

2016-09-27
2016-01-8091
A new method for driving the hydraulic free piston engine is proposed. This method achieves the compression stroke automatically rather than special recovery system. Principle of hydraulic differential drive free-piston engine is analyzed and the control strategy of this novel hydraulic driving engine is also introduced. Then energy balance method is used to design the main parameters of the novel engine. High pressure and secondary high pressure of the hydraulic system are constrained by the combustion parameters and therefore parameters are analyzed. In order to verify the effectiveness of energy balance method, the mathematical model is established based on the piston force analysis and engine working principle. The transient results of dynamics are obtained through simulation. In addition, the effectiveness of the simulation is proofed by dimensionless analysis. It indicates that energy balance method realizes the basic performance of hydraulic free piston engine.
X