Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Panel Assembly Line (PAL) for High Production Rates

2015-09-15
2015-01-2492
Developing the most advanced wing panel assembly line for very high production rates required an innovative and integrated solution, relying on the latest technologies in the industry. Looking back at over five decades of commercial aircraft assembly, a clear and singular vision of a fully integrated solution was defined for the new panel production line. The execution was to be focused on co-developing the automation, tooling, material handling and facilities while limiting the number of parties involved. Using the latest technologies in all these areas also required a development plan, which included pre-qualification at all stages of the system development. Planning this large scale project included goals not only for the final solution but for the development and implementation stages as well. The results: Design/build philosophy reduced project time and the number of teams involved. This allowed for easier communication and extended development time well into the project.
Journal Article

Automated Floor Drilling Equipment for the 767

2014-09-16
2014-01-2270
A new portable floor drilling machine, the 767AFDE, has been designed with a focus on increased reach and speed, ease-of-use, and minimal weight. A 13-foot wide drilling span allows consolidation of 767 section 45 floor drilling into a single swath. A custom CNC interface simplifies machine operations and troubleshooting. Four servo-driven, air-cooled spindles allow high rate drilling through titanium and aluminum. An aluminum space frame optimized for high stiffness/weight ratio allows high speed operation while minimizing aircraft floor deflection. Bridge track tooling interfaces between the machine and the aircraft grid. A vacuum system, offline calibration plate, and transportation dolly complete the cell.
Technical Paper

Production Implementation of a Multi Spindle Flexible Drilling System for Circumferential Splice Drilling Applications on the 777 Airplane

2009-11-10
2009-01-3090
With the recent development of a multi spindle flex track drilling system for aerospace applications, the challenges of testing and implementation on existing airplane programmes require unique technical methodologies and solutions. This paper discusses the technical approach, problems encountered and methodologies/solutions used to successfully implement a multi spindle flex track drilling system for circumferential splice drilling on the 777 airplane. The multi spindle system uses varieties of flex track carriages attached to flexible vacuum tracks for wide inside drilling. The hardware and software challenges encountered during the interfacing of the multi spindles are discussed as well as the complex problem of indexing and locating all detailed components of the splice accurately and with high repeatability.
Technical Paper

Development of a Multi Spindle Flexible Drilling System for Circumferential Splice Drilling Applications on the 777 Airplane

2008-09-16
2008-01-2298
Flex Track Drilling systems are being used increasingly in aerospace applications providing low cost, highly efficient automated drilling systems. Certain applications like circumferential splice drilling on large size airplane fuselages require multi spindle flex track systems working in tandem to meet production efficiency requirements. This paper discusses the development of a multi spindle flex track drilling system for a circumferential splice drilling on the 777 airplane. The multi spindle system developed uses a variety of flex track carriages attached to the flexible vacuum tracks to allow for offset or wide inside drilling. Segmented machine programmes allow these multiple machines to be deployed on the same circumferential splice on the airplane providing the multi spindle system. Interfacing of the multiple spindles is achieved by a custom OEM interface using a single screen thereby ensuring simplicity of operation.
Journal Article

Development & Implementation of an Electric Boring Process for the Frame Lug for Main Landing Gear Swing Link on the 777 Airplane

2008-09-16
2008-01-2291
This paper discusses the process development and implementation of an Electric Boring process for boring the Frame Lug for the Main Landing Gear (MLG) Swing Link bushing on the 777 Airplane. Due to the process reliability issues associated with the equipment traditionally used for this process, primarily air driven right angle motors, a boring process using electric motors was developed and implemented for this application. The process development focused on equipment selection based on horsepower/torque requirements, laboratory testing for cutting parameters and bore quality generation, equipment reliability testing under operational loads and process efficiency validation. The implementation programme involved the detail design and fabrication of protective enclosure (explosion proof) hardware to prevent the electric motor and its connections from being contaminated by various fluids used in processes in the vicinity of this application.
Technical Paper

Reducing Design Time, Part Cost, and Manufacturing Risk on New Airplane Projects Using Intelligent Software Solutions

2007-09-17
2007-01-3927
New and derivative commercial jetliner programs face increased pressure to reduce cost, shorten development cycles, increase production rates, and create an increasingly fuel efficient aircraft. The industry also has limited engineering resources and suppliers with manufacturing capacity constraints. Designing parts right the first time, while concurrently taking into account available and proven manufacturing techniques, is crucial to meeting product development schedule and profitability goals. New, knowledge-based software solutions bridge the gap between design, manufacturing, and the supply chain, assuring timely, cost effective, and correctly manufactured products. Boeing Commercial Airplanes used a unique knowledge-based software solution to analyze one of the most complicated jetliner parts: the titanium part joining the wing to the aircraft body.
Technical Paper

Reconfigurable Fixturing

2004-09-21
2004-01-2837
An innovative reconfigurable fixture was developed by the Boeing Company to hold spars while performing fastening and drilling operations, reducing cost, maintenance and increasing accuracy.
Technical Paper

Monolithic Structure Affordability: 737 Classic Versus Next Generation

2003-09-08
2003-01-2909
One recent evolution in commercial transport structure has been the emergence of monolithic structure applications. Monolithic structure reduces the number of parts that must be managed, eliminates sub-assembly operations and contributes strongly to determinant assembly practices. The cost of three components from the Boeing 737-200 and their counterparts on the Boeing 737-600 will be compared. The mid 1960's 737-200 components were assembled from sheet metal details. The mid 1990's 737-600 components are monolithic designs and utilize superplastic forming, casting and NC machining technologies. The built-up solutions and the monolithic solutions are compared based on cost infrastructures from the 1960's and the 1990's.
Technical Paper

Determinant Spar Assembly Cell

2002-10-01
2002-01-2646
Determinant Spar Assembly Cell (DSAC) has been developed by Boeing to help reduce the cost of building commercial airplanes. This revolutionary system uses a state of the art 5 axis NC machine in conjunction with quick-change multi-function end effectors and a reconfigurable fixture, to provide the capability to assemble any Boeing heritage commercial airplane spar. This paper describes the high level aspects of this unique system.
Technical Paper

Analysis & Modeling Reduce Development Risks For Improving Integration of Large Aircraft Components

2002-09-30
2002-01-2640
Historically the manufacturing of aircraft fuselages with capacities of 100+ passengers requires large panels and assemblies to be integrated through processes of manipulating them into proper alignment to one another, and then fastening the panels and assemblies together. The manipulating and alignment processes typically incorporate large handling devices and cranes to move the large panels and monolithic tools or measurement alignment systems to precisely align the aircraft components. After the individual panels and assemblies are properly aligned, they can be fastened together. Normally, the fastening process is performed manually with the aid of fastener location templates. There are problems with these processes. They require high capital investments for tooling and facilities; up to two shifts (16 hours) to complete the loading, indexing, and fastening operations; and depend on a highly skilled and knowledgeable work force to minimize discrepancies.
Technical Paper

Post-Machining Distortion of Formed Fuselage Frame Segments

2001-09-10
2001-01-2594
Process development work was conducted to develop a machined fuselage frame concept for a small (5 abreast) commercial airplane. To minimize detail fabrication cost and to facilitate lean manufacturing, roll forming was identified as the preferred forming process. To reduce assembly costs, long frame segments were desired to minimize the number of frame splices. Since plate stock is limited to lengths of approximately 3.66 meters (12 feet), formed aluminum extrusions were selected as the raw material form. Roll forming and stretch forming process paths were screened for both J section and rectangular bar extrusions. The post machining distortion produced in formed extrusion and plate hog-out frame segments was compared to each other and to process standards governing allowable fit-up forces. As a result of this process development activity, a producible roll forming process path was developed.
Technical Paper

Automated Removal of Temporary Fasteners on Wing Panels

2000-09-19
2000-01-3031
Current practice for assembly of wing skins to wing stringers utilizes temporary aluminum lock bolts prior to squeeze riveting. Removing and replacing these fasteners is time consuming and hazardous. We have automated the wing riveters to perform this replacement process. This paper discusses the four areas of development that were carried out to accomplish this: tack fastener installation, machine vision system development, drill development and new tooling. Testing results and new findings will be discussed.
X