Refine Your Search


Search Results

Viewing 1 to 19 of 19
Technical Paper

Model-Based Systems Engineering Methodology for Implementing Networked Aircraft Control System on Integrated Modular Avionics – Environmental Control System Case Study

Integrated modular avionics (IMA) architectures host multiple federated avionics applications on a single platform and provide benefits in terms of size, weight, and power, which, however, leads to increased complexity, especially during the development process. To cope efficiently with the high level of complexity, a novel, structured development methodology is required. This paper presents a model-based systems engineering (MBSE) development approach for the so-called “distributed integrated modular architecture” (DIMA). The proposed methodology adapts the open-source Capella tool, based on the Architecture Analysis & Design Integrated Approach (ARCADIA) methodology, to implement a complete design cycle, starting with requirements captured from the aircraft level to streamline the development, culminating in the integration of an avionics application into an ARINC 653 platform.
Journal Article

Towards Standardising Methods for Reporting the Embodied Energy Content of Aerospace Products

Within the aerospace industry there is a growing interest in evaluating and reducing the environmental impacts of products and related risks to business. Consequently, requests from governments, customers, manufacturers, and other interested stakeholders, for environmental information about aerospace products are becoming widespread. Presently, requests are inconsistent and this limits the ability of the aerospace industry to meet the informational needs of various stakeholders and reduce the environmental impacts of their products in a cost-effective manner. Energy consumption is a significant business cost, risk, and a simple proxy value for overall environmental impact. This paper presents the initial research carried out by an academic and industry consortium to develop standardised methods for calculating and reporting the embodied manufacturing energy content of aerospace products.
Technical Paper

Tailplane with Positive Camber for Reduced Elevator Hinge Moment

The Learjet 85 is a business jet with an unpowered manual elevator control and is designed for a maximum dive Mach number of 0.89. During the early design, it was found that the stick force required for a 1.5g pull-up from a dive would exceed the limit set by FAA regulations. A design improvement of the tailplane was initiated, using 2D and 3D Navier-Stokes CFD codes. It was discovered that a small amount of positive camber could reduce the elevator hinge moment for the same tail download at high Mach numbers. This was the result of the stabilizer forebody carrying more of the tail download and the elevator carrying less. Consequently, the elevator hinge-moment during recovery from a high-speed dive was lower than for the original tail. Horizontal tails are conventionally designed with zero or negative camber since a positive camber can have adverse effects on tail stall and drag.
Technical Paper

Integrated Reliability and Safety Education Program

The safe operation of technical systems is a mandatory basic requirement for the entire industry. However, there are specific industries where the safety of operation is critical and is considered as a required characteristic. These types of industries include the aerospace, military, civil aviation, nuclear power, as well as chemical and automotive industries. Safety is everyone's responsibility but engineering plays the most important role in the course of achieving a safe product operation. There are two specific phases of the product life cycle where the safety characteristics should be addressed by engineering activities: the design and development and operation phases. Modern engineering education is oriented to provide future engineers with a sufficient background to be able to Conceive-Design-Implement-Operate.
Technical Paper

Considerations on the Use of Hydrophobic, Superhydrophobic or Icephobic Coatings as a Part of the Aircraft Ice Protection System

Ice adhesion on critical aircraft surfaces is a serious potential hazard that runs the risk of causing accidents. For this reason aircraft are equipped with active ice protection systems (AIPS). AIPS increase fuel consumption and add complexity to the aircraft systems. Reducing energy consumption of the AIPS or replacing the AIPS by a Passive Ice Protection System (PIPS), could significantly reduce aircraft fuel consumption. New coatings with superhydrophobic properties have been developed to reduce water adherence to surfaces. Superhydrophobic coatings can also reduce ice adhesion on surfaces and are used as icephobic coatings. The question is whether superhydrophobic or icephobic coatings would be able to reduce the cost associated with AIPS.
Technical Paper

Design of a Human-Powered Aircraft Applying Multidisciplinary Optimization Method

A particular field of aerospace engineering is dedicated to the study of aircraft that are so energetically efficient, that the power produced by a human being enables it to takeoff and maintain sustained flight without any external or stored energy. These aircraft are known as Human-Powered Aircraft (HPA). The objective of the present work is to design a single-seat HPA applying multidisciplinary optimization techniques with an objective function that minimizes both the power required and the stall speed, representing respectively, an easier and safer aircraft to fly. In the first stage, a parametric synthesis model is created to generate random aircraft and assess their aerodynamic(utilizing a 3D vortex lattice method code and a component drag buildup method for the drag polar), stability and control(utilizing static stability criteria), weight (estimated using historical data) and performance (using the thus calculated data) characteristics.
Technical Paper

An Approach of Developing System Redundancy Management Requirements

This paper presents a generic Redundancy Management (RM) requirements definition process that is applicable to a complex system RM requirements development. In the aerospace industry, the ‘Aerospace Recommended Practices’ (ARP) 4754 and 4761 are typically used processes to ensure given safety and availability goals for complex systems. The process proposed in this paper is based on these standard guidelines and enhances them to provide a standardized process for the development of RM requirements with interactions between the system requirements development and the preliminary system safety assessment processes. The output of this process will help to achieve the following objectives: The system RM/failure monitoring requirements are defined commensurate with the system safety and availability requirements; the system is fault-tolerant to the degree necessary to meet the system safety and availability requirements; the system is robust and the system architecture is optimized.
Technical Paper

Efficient 3D Artificial Ice Shapes Simulations with 2D Ice Accretion Codes using a 3-Level Correction

3D ice accretion codes have been available for a few decades but, depending on the specific application, their use may be cumbersome, time consuming and requiring a great deal of expertise in using the code. In particular, simulations of large 3D glaze ice accretions using multiple layers of ice is a very challenging and time consuming task. There are several reasons why 2D icing simulations tools are still widely used in the aircraft industry to produce realistic glaze ice shapes. 2D codes are very fast and robust, with a very short turn-around time. They produce adequate results in areas of the aircraft where 3D effects on airflow or droplets concentration can be neglected. Their use can be extended to other areas of the aircraft if relevant 3D effects can be taken into account. This paper proposes a simulation methodology that includes three levels of corrections to extend the use of 2D icing codes to most of the aircraft surfaces.
Technical Paper

IVHM Development and the Big Data Paradigm

This paper discusses the correlation of IVHM (Integrated Vehicle Health Management) as an emerging aerospace discipline and the Big Data paradigm widely discussed in the Information Technology industry. The 4-V model is discussed to qualify a Big Data problem in terms of the volume, variety, velocity and veracity of the data involved. Big Data management allows, for example, correlations to be found to “spot business trends, determine quality of research, prevent diseases, combat crime, and determine real-time roadway traffic conditions”. Examining these two fields side by side is necessary and desirable because innovation is very likely to occur when and where different but correlated domains interface. This paper compares the most significant technical components required for Big Data Analytics and IVHM to work.
Technical Paper

Development of Low Cost Fuselage Frames by Resin Transfer Molding

This paper presents work on the development of a low cost fuselage C-frame for aircraft primary structure using a Light Resin Transfer Molding (RTM) process. Compared to labor intensive hand layup prepreg technologies, Light RTM offers some substantial advantages by reducing infrastructure requirements such as hydraulic presses or autoclaves. Compared to Prepreg, Light RTM tooling creates two finished surfaces, which is an advantage during installation due to improved dimensional accuracy. The focus of this work was to develop means of achieving high fiber volume fraction structural frames using low cost tooling and a low volume manufacturing strategy. In this case a three piece Light RTM mold was developed using an internal mandrel. To achieve the strength requirements, a combination of crimped and non-crimped fabrics were selected for the reinforcing preform.
Journal Article

Aircraft Structure Paint Thickness and Lightning Swept Stroke Damages

During its flight an aircraft can be struck by lightning and the induced high current will require a highly conductive airframe skin structure in order for it to propagate through with minimum damage. However an aircraft skin is generally coated with paint and the airframer does not always have control on the paint thickness. Paint thickness generates heightened concerns for lightning strike on aircraft, mainly because most of coatings dedicated to that purpose are non-conductive. Using insulating material or non-conductive coating with certain thickness may contribute to or increase damage inflicted by the swept stroke lightning energy, even on metallic structures Due to its high relative permittivity, a non-conductive paint or coating on a fuselage skin surface will contribute to slow down the lightning current propagation through structure. With this comes the risk of increasing heat that will favor structural damage and possible melt through.
Journal Article

A Novel Approach for Technology Development: A Success Story

The composites development team at Bombardier Aerospace has pushed the Integrated Product Development Team to a new level. The team has been created outside the business priorities and was partially funded by a provincial government initiative to create a greener aircraft. A dedicated R&D team can reduce the gap between the different disciplines by encouraging them to work as one entity and rapidly develop high Technology Readiness Level (TRL) and high Manufacturing Readiness Level (MRL) solutions. Additionally, the interactions between the groups create a harmonization of the development philosophy and a sharing of the building block approach. This leads to a significant cost and lead time reduction in the coupon, element and detail testing. The constitution of the team also has a great impact on the level of expertise and the flexibility to adjust to new demands.
Journal Article

Part Redesign: From Fastened Assembly to Co-Cured Concept

During the course of an aircraft program, cost and weight savings are two major areas demanding constant improvements. An Integrated Product Development Team (IPDT) was set to the task of proposing potential improvements to an aircraft under development. From a list of potential parts, the IPDT selected one which was considered as the most suitable to leverage a co-curing process. In the aircraft manufacturing industry, any major modification to a part design should follow the program's means of compliance to certification. Furthermore, to demonstrate the new design's safety, sizing methodology and all supplementary testing must fit in the certification strategy. The IPDT approach was used to ensure the maturity of both process and part. Indeed, a mature turnkey solution can be implemented quickly on the shop floor. This IPDT approach is detailed in another SAE 2013 technical paper entitled: “A Novel Approach for Technology Development: A Success Story” [3].
Journal Article

Process Change: Redesign of Composite Parts for Structural Integrity

The objective of this document is to present the methodology used to verify the structural integrity of a redesigned composite part. While shifting the manufacturing process of a composite part from pre-impregnated to a liquid resin injection process, the Composites Development team at Bombardier Aerospace had to redesign the component to a new set of design allowables. The Integrated Product Development Team (IPDT) was able to quickly provide a turnkey solution that assessed three aspects of airframe engineering: Design, Materials & Processes (M&P) and Stress. The focus of this paper will be the stress substantiation process led by the Stress Engineers. It will also bring up the synergies with M&P that are unique to the IPDT approach. The stress substantiation process required three distinct checks be confirmed.
Technical Paper

Optimal Traceability for IMA System-of-Systems

Traceability has always been considered a useful but costly activity and different methods have been applied to reduce this cost. The current paper constitutes an attempt to improve these methods by introducing an optimal traceability process to be used in the context of RTCA DO-297 “Integrated Modular Avionics (IMA) Development Guidance and Certification Considerations”. The paper starts by comparing the definitions of traceability from DO-297 and the related development guidelines (i.e. ARP4754A, DO-254 and DO-178B). The paper continues by classifying the traceability methods recommended by the guidelines and introducing a performance criterion for optimal traceability based on category theory. This criterion addresses the possibility of information loss present in the current traceability methods. The paper proposes an optimal traceability process (i.e. that guarantees that information is not lost) and exemplifies it. The paper ends by recommending further enhancements.
Journal Article

Integrated Safety Management System

The Safety Management System requires a structured Risk Management Process to be effective. In the technical fields where numerous potentially catastrophic risks exist, processes and procedures need to account not only for the hardware random failures but also of human errors. The technology has progressed to the point where the predominant safety risks are not so much the machine failures but that of the human interaction. Accidents are rarely the result of a single cause but of a number of latent contributing factors that when combined result in the accident. In the Aerospace industry, the operational risk to the fleet is assessed by the manufacturer and the operator independently and is used in safety and/or regulatory decision-making.
Technical Paper

Contending with Airframe Icing

Pilots need to be aware, under certain icing conditions, of the limitations of ice protection on their particular aircraft. FAA certification for flight into known icing does not ensure complete safety of flight in all icing encounters regardless of skills or aircraft capability. Too many accidents where icing was a contributing factor attest to these facts. Most of the time flight crews will not encounter an extremely severe condition. However, icing conditions are so widely variable that by chance they will encounter a condition in which they are unprepared. Many years of flight research in icing by the authors have provided the opportunity to experience and measure a wide range of icing conditions in which the performance losses and flying qualities of the aircraft were determined. These results are described in this paper.
Technical Paper

Aircraft Safety Monitoring and Assessment Practices

Aircraft systems are designed with reliability, safety and cost effectiveness in mind. The certification of the aircraft is based on tests and results of theoretical analyses that show the compliance with the FAR/JAR requirements. Monitoring for safety for in-service aircraft is an important, critical and extremely complex process. The ultimate objective is to assure that the safety level is equal to the original estimate or better. The manufacturer of the aircraft is particularly responsible for overall monitoring and assessment of all safety related events and corrective actions. Many different philosophies were adopted for this purpose. The safety monitoring and audit strategy is generally based on experience, engineering judgment, event analysis and numerical quantification by using probability theory and statistical tools. The aircraft sequential entry in the service and the aging of their components lead to the non-homogeneity of the fleet.
Technical Paper

The Bombardier Flight Test Center - Meeting the Challenge

In 1991, shortly after acquiring Learjet, Bombardier consolidated all flight testing of new aircraft at the Wichita, Kansas facility. Since then, nine new aircraft were certified, and the Flight Test Center grew from 20 dedicated flight test personnel, to nearly 500 dedicated flight test personnel. The Canadian based company in conjunction with several international risk sharing partners, has created a highly dynamic flight test environment, tasking the Flight Test Center with the challenge of bringing a new product to market each year. This rapid growth was centered on supporting three aircraft product lines; Learjet, Canadair, and DeHavilland. New hangars, telemetry, and ground support facilities were built to accommodate the increased flight test demands. The Bombardier Flight Test Center, otherwise known as BFTC, conducts flight test operations on a seven day per week schedule, and in 1999, flew over 5000 flight test hours in development and certification testing.