Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

SEA Modeling of A Vehicle Door System

The Door system is one of the major paths for vehicle interior noise under a variety of load conditions. In this paper we consider the elements of the door lower (excluding glass) in terms of noise transmission. Passenger car doors are comprised of the outer skin, door cavity, door inner sheet metal, vapor barrier, and interior trim. Statistical Energy Analysis (SEA) models must effectively describe these components in terms of their acoustic properties and capture the dominant behaviors relative to the overall door system. In addition, the models must interface seamlessly with existing vehicle level SEA models. SEA modeling techniques for the door components are discussed with door STL testing and model correlation results.
Technical Paper

SEA in Vehicle Development Part II: Consistent SEA Modeling for Vehicle Noise Analysis

In this paper, a model condensation technique is developed to ensure consistent modeling of STL (Sound Transmission Loss) between coarse and detailed SEA model. In the Performance-Based coarse SEA Model, the component level performance (STL and absorption) is assigned to each path, which comes from various ways including detailed analytical SEA model. From the detailed SEA model for the component or even the whole vehicle, the equivalent performance data needs to be condensed and extracted for the coarse model. The condensation theory for equivalent STL is presented in this paper. The extra work needed to apply this technique to detailed SEA model is negligible by using AutoSEA script. An example for condensation of a detailed component model is given at the end. Comparison between the detailed analytical SEA model and the coarse SEA Model is consistent.
Technical Paper

Energy Flow Method for Mid-Frequency Vibration Analysis

The Energy Flow Method (EFM), which is based on a Finite Element Analysis (FEA) model and its modal frequency response solution is presented in this paper. The energy and power for each subsystem are the primary response and excitation parameters as in the Statistical Energy analysis (SEA) method. This gives a broad-brush prediction by averaging over both frequency and spatial domain. This prediction is useful when uncertainties exist in the model. The FEA model is used to capture the geometry detail, which is critical in mid-frequency vibration. As an example, a five-plate system is studied using various methods, including traditional FEA, SEA and EFM. The last one has been implemented in MSC/NASTRAN. A discussion is given to understand the limitation of SEA and FEA application in mid frequency response.