Refine Your Search

Topic

Author

Search Results

Technical Paper

New Reference PMHS Tests to Assess Whole-Body Pedestrian Impact Using a Simplified Generic Vehicle Front-End

2017-11-13
2017-22-0012
This study aims to provide a set of reference post-mortem human subject tests which can be used, with easily reproducible test conditions, for developing and/or validating pedestrian dummies and computational human body models against a road vehicle. An adjustable generic buck was first developed to represent vehicle front-ends. It was composed of four components: two steel cylindrical tubes screwed on rigid supports in V-form represent the bumper and spoiler respectively, a quarter of a steel cylindrical tube represents the bonnet leading edge, and a steel plate represents the bonnet. These components were positioned differently to represent three types of vehicle profile: a sedan, a SUV and a van. Eleven post-mortem human subjects were then impacted laterally in a mid-gait stance by the bucks at 40 km/h: three tests with the sedan, five with the SUV, and three with the van.
Technical Paper

Springback Prediction Improvement Using New Simulation Technologies

2009-04-20
2009-01-0981
Springback is a major concern in stamping of advanced high strength steels (AHSS). The existing computer simulation technology has difficulty predicting this phenomenon accurately even though it is well developed for formability simulations. Great efforts made in recent years to improve springback predictions have achieved noticeable progress in the computational capability and accuracy. In this work, springback simulation studies are conducted using FEA software LS-DYNA®. Various parametric sensitivity studies are carried out and key variables affecting the springback prediction accuracy are identified. Recently developed simulation technologies in LS-DYNA® are implemented including dynamic effect minimization, smooth tool contact and newly developed nonlinear isotropic/kinematic hardening material models. Case studies on lab-scale and full-scale industrial parts are provided and the predicted springback results are compared to the experimental data.
Technical Paper

Robust Analysis of Clamp Load Loss in Aluminum Threads due to Thermal Cycling

2009-04-20
2009-01-0989
A DFSS study identified a new mechanism for clamp load loss in aluminum threads due to thermal cycling. In bolted joints tightened to yield, the difference in thermal expansion between the aluminum and steel threads can result in a loss of clamp load with each thermal cycle. This clamp load loss is significantly greater than the loss that can be explained by creep alone. A math model was created and used to conduct a robust analysis. This analysis led to an understanding of the design factors necessary to reduce the cyclic clamp load loss in the aluminum threads. This understanding was then used to create optimized design solutions that satisfy constraints common to powertrain applications. Estimations of clamp load loss due to thermal cycling from the math model will be presented. The estimates of the model will be compared to observed physical test data. A robust analysis, including S/N and mean effect summary will be presented.
Technical Paper

Early Noise Analysis for Robust Quiet Brake Design

2009-04-20
2009-01-0858
At the early design stage it is easier to achieve impacts on the brake noise. However most noise analyses are applied later in the development stage when the design space is limited and changes are costly. Early noise analysis is seldom applied due to lack of credible inputs for the finite element modeling, the sensitive nature of the noise, and reservations on the noise event screening of the analysis. A high quality brake finite element model of good components’ and system representation is the necessary basis for credible early noise analysis. That usually requires the inputs from existing production hardware. On the other hand in vehicle braking the frequency contents and propensity of many noise cases are sensitive to minor component design modifications, environmental factors and hardware variations in mass production. Screening the noisy modes and their sensitivity levels helps confirm the major noisy event at the early design stage.
Technical Paper

Dynamic Spot Weld Testing

2009-04-20
2009-01-0032
Static and dynamic strength tests were performed on spot welded specimens made of dual-phase (DP) 780 and mild steels (DQSK). Lap-shear (LS) and cross-tension (CT) as well as a new mixed mode specimen were studied using MTS hydraulic universal testing machine for static tests and drop weight tower for dynamic tests. Three weld nugget sizes were made for each steel and CT and LS. DP780 with one weld size was also tested in mixed mode. Load and displacement as functions of time and fracture mode of the spot welds were recorded. Representative data are reported in this paper.
Technical Paper

Multi-Disciplinary Robust Optimization for Performances of Noise & Vibration and Impact Hardness & Memory Shake

2009-04-20
2009-01-0341
This paper demonstrates the benefit of using simulation and robust optimization for the problem of balancing vehicle noise, vibration, and ride performance over road impacts. The psychophysics associated with perception of vehicle performance on an impact is complex because the occupants encounter both tactile and audible stimuli. Tactile impact vibration has multiple dimensions, such as impact hardness and memory shake. Audible impact sound also affects occupant perception of the vehicle quality. This paper uses multiple approaches to produce the similar, robust, optimized tuning strategies for impact performance. A Design for Six Sigma (DFSS) project was established to help identify a balanced, optimized solution. The CAE simulations were combined with software tools such as iSIGHT and internally developed Kriging software to identify response surfaces and find optimal tuning.
Journal Article

Modeling and Simulation of Torsional Vibration of the Compliant Sprocket in Balance Chain Drive Systems

2008-06-23
2008-01-1529
The work presented in this paper outlines the development of a simulation model to aid in the design and development of a compliant sprocket for balancer drives. A design with dual-mass flywheel and a crank-mounted compliant chain sprocket greatly reduces interior noise levels due to chain meshing. However, experimental observations showed the compliant sprocket can enter into resonance and generate excessive vibration energy during startup. Special features are incorporated into the compliant sprocket design to absorb and dissipate this energy. Additional damper spring rate, high hysteresis and large motion angle that overlap the driving range may solve the problem during engine start-up period. This work develops a simulation model to help interpret the measured data and rank the effectiveness of the design alternatives. A Multibody dynamics system (MBS) model of the balancer chain drive has been developed, validated, and used to investigate the chain noise.
Technical Paper

Brake Noise Analysis with Lining Wear

2008-04-14
2008-01-0823
It is well known that lining reduction through wear affects contact pressure profile and noise generation. Due to high complexity in brake noise analysis, many factors were not included in previous analyses. In this paper, a new analysis process is performed by running brake “burnishing” cycles first, followed by noise analysis. In the paper, brake lining reduction due to wear is assumed to be proportional to the applied brake pressure with ABAQUS analysis. Brake pads go through four brake application-releasing cycles until the linings settle to a more stable pressure distribution. The resulting pressure profiles show lining cupping and high pressure spots shifting. The pressure distributions are compared to TekScan measurements. Brake noise analysis is then conducted with complex eigenvalue analysis steps; the resulting stability chart is better correlated to testing when the wear is comprehended.
Technical Paper

Robust Assessment of USCAR Electrical Connectors Using Standardized Signal-To-Noise

2008-04-14
2008-01-0364
Robust assessment using standardized signal-to-noise (SS/N) is a Design For Six Sigma (DFSS) methodology used to assess the mating quality of USCAR electrical connectors. When the insertion force vs. distance relationship is compared to a standard under varying environmental and system-related noise conditions, the ideal function is transformed into a linear relationship between actual and ideal force at the sample points acquired during the mating displacement. Since the ideal function used in the robust assessment of competing designs has a linear slope of 1 through the origin, the SS/N function used is of the form 10 log (1/σ2), also known as nominal-the-best type 2. Using this assessment methodology, designs are compared, with a higher SS/N indicating lower variation from the standard.
Technical Paper

NVH Analysis of Balancer Chain Drives with the Compliant Sprocket of the Crankshaft with a Dual-Mass Flywheel for an Inline-4 Engine

2007-05-15
2007-01-2415
The work presented in this paper outlines the design and development of a compliant sprocket for balancer drives in an effort to reduce the noise levels related to chain-sprocket meshing. An experimental observation of a severe chain noise around a resonant engine speed with the Dual-Mass Flywheel (DMF) and standard build solid (fixed) balancer drive sprocket. Torsional oscillation at the crankshaft nose at full load is induced by uneven running of crankshaft with a dual-mass flywheel system. This results in an increase of the undesirable impact noise caused by the meshing between the chain-links and the engagement/disengagement regions of sprockets, and the clatter noise from the interaction between the vibrating chain and the guides. This paper evaluates and discusses the benefits that the compliant sprocket design provided. A multi-body dynamics system (MBS) model of the balancer chain drive has been developed, validated, and used to investigate the chain noise.
Technical Paper

SAE Standard Procedure J2747 for Measuring Hydraulic Pump Airborne Noise

2007-05-15
2007-01-2408
This work discusses the development of SAE procedure J2747, “Hydraulic Pump Airborne Noise Bench Test”. This is a test procedure describing a standard method for measuring radiated sound power levels from hydraulic pumps of the type typically used in automotive power steering systems, though it can be extended for use with other types of pumps. This standard was developed by a committee of industry representatives from OEM's, suppliers and NVH testing firms familiar with NVH measurement requirements for automotive hydraulic pumps. Details of the test standard are discussed. The hardware configuration of the test bench and the configuration of the test article are described. Test conditions, data acquisition and post-processing specifics are also included. Contextual information regarding the reasoning and priorities applied by the development committee is provided to further explain the strengths, limitations and intended usage of the test procedure.
Technical Paper

Gear Mesh Excitation Models for Assessing Gear Rattle and Gear Whine of Torque Transmission Systems with Planetary Gear Sets

2007-05-15
2007-01-2245
This paper presents four methodologies for modeling gear mesh excitations in simple and compound planetary gear sets. The gear mesh excitations use simplified representations of the gear mesh contact phenomenon so that they can be implemented in a numerically efficient manner. This allows the gear mesh excitations to be included in transmission system-level, multibody dynamic models for the assessment of operating noise and vibration levels. After presenting the four approaches, a description is made regarding how they have been implemented in software. Finally, example models are used to do a comparison between the methods
Technical Paper

Prestrain Effect on Fatigue of DP600 Sheet Steel

2007-04-16
2007-01-0995
The component being formed experiences some type of prestrain that may have an effect on its fatigue strength. This study investigated the forming effects on material fatigue strength of dual phase sheet steel (DP600) subjected to various uniaxial prestrains. In the as-received condition, DP600 specimens were tested for tensile properties to determine the prestraining level based on the uniform elongation corresponding to the maximum strength of DP600 on the stress-strain curve. Three different levels of prestrain at 90%, 70% and 50% of the uniform elongation were applied to uniaxial prestrain specimens for tensile tests and fatigue tests. Fatigue tests were conducted with strain controlled to obtain fatigue properties and compare them with the as-received DP600. The fatigue test results were presented with strain amplitude and Neuber's factor.
Technical Paper

Forming Simulation and Validation of Laminated Steel Panels

2007-04-16
2007-01-1675
Laminated steel has been increasingly applied in automotive products for vibration and noise reduction. One of the major challenges the laminated steel poses is how to simulate forming processes and predict formability severity with acceptable correlation in production environment, which is caused by the fact that a thin polymer core possesses mechanical properties with significant difference in comparison with that of steel skins. In this study a cantilever beam test is conducted for investigating flexural behavior of the laminated steel and a finite element modeling technique is proposed for forming simulation of the laminated steel. Two production panels are analyzed for formability prediction and the results are compared with those from the try-out for validation. This procedure demonstrates that the prediction and try-out are in good agreement for both panels.
Technical Paper

Tensile Deformation and Fracture of Press Hardened Boron Steel using Digital Image Correlation

2007-04-16
2007-01-0790
Tensile measurements and fracture surface analysis of low carbon heat-treated boron steel are reported. Tensile coupons were quasi-statically deformed to fracture in a miniature tensile testing stage with custom data acquisition software. Strain contours were computed via a digital image correlation method that allowed placement of a digital strain gage in the necking region. True stress-true strain data corresponding to the standard tensile testing method are presented for comparison with previous measurements. Fracture surfaces were examined using scanning electron microscopy and the deformation mechanisms were identified.
Technical Paper

Hybrid Technique Based on Finite Element and Experimental Data for Automotive Applications

2007-04-16
2007-01-0466
This paper presents the hybrid technique application in identifying the noise transfer paths and the force transmissibility between the interfaces of the different components in the vehicle. It is the stiffness based formulation and is being applied for the low to mid frequency range for the vibration and structure borne noise. The frequency response functions such as dynamic compliance, mobility, inertance, and acoustic sensitivity, employed in the hybrid method, can either be from the test data or finite element solution or both. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc.
Technical Paper

High Performance Vehicle Chassis Structure for NVH Reduction

2006-04-03
2006-01-0708
The main objective of this paper was to determine if the vehicle performance can be maintained with a reduced mass cradle structure. Aluminum and magnesium cradles were compared with the baseline steel cradle. First, the steel chassis alone is analyzed with the refined finite element model and validated with experimental test data for the frequencies, normal modes, stiffnesses and the drive-point mobilities at various attachment mount/bushing locations. The superelement method in conjunction with the component mode synthesis (CMS) technique was used for each component of the vehicle such as Body-In-White, Instrument Panel, Steering Column Housing & Wheel, Seats, Cradles, CRFM, etc. After assemblage of all the superelements, analysis was carried out by changing the front and rear cradle gauges and the material properties. The drive-point mobility response was computed at various locations and the noise (sound pressure) level was calculated at the driver and passenger ears.
Technical Paper

High Temperature Oxidation/Corrosion Performance of Various Materials for Exhaust System Applications

2006-04-03
2006-01-0605
Durability requirements for exhaust materials have resulted in the increased use of stainless steels throughout the exhaust system. The conversion of carbon steel exhaust flanges to stainless steel has occurred on many vehicles. Ferritic stainless steels are commonly used for exhaust flanges. Flange construction methods include stamped sheet steel, thick plate flanges and powder metal designs. Flange material selection criteria may include strength, oxidation resistance, weldability and cold temperature impact resistance. Flange geometry considerations include desired stiffness criteria, flange rotation, gasket/sealing technique and vehicle packaging. Both the material selection and flange geometry are considered in terms of meeting the desired durability and cost. The cyclic oxidation performance of the material is a key consideration when selecting flange materials.
Technical Paper

Multi Objective Robust Optimization for Idle Performance

2006-04-03
2006-01-0757
This paper presents a pioneer work and first time application of Multi Objective Robust Optimization to analytically improve Idle Shake Performance. The method is developed to obtain a robust design with multiple objectives under consideration along with managing material property variation. It was a Robust Optimization on top of Multi Objective Genetic Algorithm, Robu-MOGA. The design variables in the study included the nominal values and tolerances of Sound Transmission Loss property, and interior material Absorption property. The analytical objective was not only to minimize the peak airborne noise at each specified frequency, but also to reduce the total cost and the total mass of the materials. In the study, AutoSEA (statistical energy analysis) from ESI Software, Inc. was used as the solver. AutoSEA was integrated with iSIGHT from Engineous Software, Inc.
Technical Paper

Optimum Design of Hood Ajar Switch For Quality

2006-04-03
2006-01-0735
The Hood ajar sensing system provides customer feedback regarding the latch positional state of hood. If the sensing system is not robust to variation due to manufacturing, thermal conditions, and assembly, diagnostic failures can result. Executing various elements of the design for six sigma process can reduce the potential for diagnostic failures. This paper presents a method for achieving quality improvements by developing transfer functions, and using them for sensitivity and variance analysis. Control parameters were optimized to minimize non-conformal situations in the presence of various noise conditions.
X