Refine Your Search



Search Results

Technical Paper

Verification and Application of Time-domain Impedance Boundary Conditions in Combined CFD and CAA Simulations

In computational fluid dynamic (CFD) and computational aeroacoustics (CAA) simulations, the wall surface is normally treated as a purely reflective wall. However, some surface treatments are usually applied in experiments. Thus, the results obtained by the simulation and experiment are sometimes not comparable. In the aeroacoustics community, impedance is a quantity to characterize the properties of an acoustically treated surface. i.e. reflectivity and absorption. One of the major numerical challenges in CAA simulations is to define acoustically well-posed boundary conditions. Basically, the impedance boundary condition is a frequency-domain boundary condition. However, CFD and CAA simulations are time-domain computations, which means the frequency-domain impedance boundary condition cannot be applied in simulations. Therefore, several methods, including the three-parameter model, the z-transform method, and the reflection coefficient model, were developed.
Technical Paper

High-Speed 3D Optical Sensing and Information Processing for Automotive Industry

This paper explains the basic principles behind two platform technologies that my research team has developed in the field of optical metrology and optical information processing: 1) high-speed 3D optical sensing; and 2) real-time 3D video compression and streaming. This paper will discuss how such platform technologies could benefit the automotive industry including in-situ quality control for additive manufacturing and autonomous vehicle systems. We will also discuss some of other applications that we have been working on such as crime scene capture in forensics.
Technical Paper

Friction Force Reduction for Electrical Terminals using Solution-Processed Reduced Graphene Oxide Coating

Electrical connectors and terminals are widely used in the automotive industry. It is desirable to mate the electrical connections using materials or coatings with low friction force to improve the ergonomics of the assembly process while maintaining good electrical conduction over the lifetime of the vehicle. We have previously shown that plasma-enhanced chemical vapor deposition (PECVD) of graphene on gold (Au) and silver (Ag) terminals can significantly reduce the insertion force (friction force during the terminal insertion process). However, the cost of this deposition method is rather high, and its high temperature process (> 400 oC) makes it impractical for materials with low melting temperatures. For example, tin (Sn) coating with a melting temperature of 232 oC is commonly used in electrical connectors, which cannot sustain the high temperature process. In this study, reduced graphene oxide was prepared using a low-cost solution process and applied onto metallic terminals.
Technical Paper

Research on Joining High Pressure Die Casting Parts by Self-Pierce Riveting (SPR) Using Ring-Groove Die Comparing to Heat Treatment Method

Nowadays, the increasing number of structural high pressure die casting (HPDC) aluminum parts need to be joined with high strength steel (HSS) parts in order to reduce the weight of vehicle for fuel-economy considerations. Self-Pierce Riveting (SPR) has become one of the strongest mechanical joining solutions used in automotive industry in the past several decades. Joining HPDC parts with HSS parts can potentially cause joint quality issues, such as joint button cracks, low corrosion resistance and low joint strength. The appropriate heat treatment will be suggested to improve SPR joint quality in terms of cracks reduction. But the heat treatment can also result in the blister issue and extra time and cost consumption for HPDC parts. The relationship between the microstructure of HPDC material before and after heat treatment with the joint quality is going to be investigated and discussed for interpretation of cracks initiation and propagation during riveting.
Technical Paper

A Comparison of Near-Field Acoustical Holography Methods Applied to Noise Source Identification

Near-Field Acoustical Holography (NAH) is an inverse process in which sound pressure measurements made in the near-field of an unknown sound source are used to reconstruct the sound field so that source distributions can be clearly identified. NAH was originally based on performing spatial transforms of arrays of measured pressures and then processing the data in the wavenumber domain, a procedure that entailed the use of very large microphone arrays to avoid spatial truncation effects. Over the last twenty years, a number of different NAH methods have been proposed that can reduce or avoid spatial truncation issues: for example, Statistically Optimized Near-Field Acoustical Holography (SONAH), various Equivalent Source Methods (ESM), etc.
Technical Paper

Multi-Material Topology Optimization for Crashworthiness Using Hybrid Cellular Automata

Structures with multiple materials have now become one of the perceived necessities for automotive industry to address vehicle design requirements such as light-weight, safety, and cost. The objective of this study is to develop a design methodology for multi-material structures accountable for vehicle crash durability. The heuristic topology synthesis approach of Hybrid Cellular Automaton (HCA) framework is implemented to generate multi-material structures with the constraint on the volume fraction of the final design. The HCA framework is integrated with ordered-SIMP (solid isotropic material with penalization) interpolation, artificial material library, as well as statistical analysis of material distribution data to ensure a smooth transition between multiple practical materials during the topology synthesis.
Technical Paper

Design for Crashworthiness of Vehicle Structures Using an Extended Hybrid Cellular Automaton Method

This paper introduces a design methodology to tailor the acceleration and displacement responses of a vehicle structure subjected to a dynamic crushing load. The proposed approach is an extension of the hybrid cellular automaton (HCA) method, through which the internal energy density is uniformly distributed within the structure. The proposed approach, referred here to as an extended HCA (xHCA) method, receives the suitable combinations of volume fraction and a finite element meta-parameter for which the algorithm synthesizes the load paths that allow the desired crash response. Lower meta-parameter values lead designs obtained by traditional optimizers, while larger values lead to designs obtained by the HCA method. Simultaneous implementation of multiple values of meta-parameters is presented here as a further development of xHCA method.
Technical Paper

Structural Optimization of Thin-Walled Tubular Structures for Progressive Collapse Using Hybrid Cellular Automaton with a Prescribed Response Field

The design optimization of thin-walled tubular structures is of relevance in the automotive industry due to their low cost, ease of manufacturing and installation, and high-energy absorption efficiency. This study presents a methodology to design thin-walled tubular structures for crashworthiness applications. During an impact, thin-walled tubular structures may exhibit progressive collapse/buckling, global collapse/buckling, or mixed collapse/buckling. From a crashworthiness standpoint, the most desirable collapse mode is progressive collapse due to its high-energy absorption efficiency, stable deformation, and low peak crush force (PCF). In the automotive industry, thin-walled components have complex structural geometries. These complexities and the several loading conditions present in a crash reduce the possibility of progressive collapse. The Hybrid Cellular Automata (HCA) method has shown to be an efficient continuum-based approach in crashworthiness design.
Technical Paper

Design of a Hybrid Honeycomb Unit Cell with Enhanced In-Plane Mechanical Properties

Sandwich structures with honeycomb core are widely used in the lightweight design and impact energy absorption applications in automotive, sporting, and aerospace industries. Recently, the auxetic honeycombs with negative Poisson's ratio attract substantial attention for different engineering products. In this study, we implement Additive Manufacturing technology, experimental testing, and Finite Element Analysis (FEA) to design and investigate the mechanical behavior of a novel unit cell for sandwich structure core. The new core model contains the conventional and auxetic honeycomb cells beside each other to create a Hybrid Honeycomb (HHC) for the sandwich structure. The different designs of unit cells with the same volume fraction of 15% are 3D-printed using Fused Deposition Modeling technique, and the comparative study on the mechanical behavior of conventional honeycomb, auxetic honeycomb, and HHC structures is conducted.
Technical Paper

Advanced Hydraulic Systems for Active Vibration Damping and Forklift Function to Improve Operator Comfort and Machine Productivity of Next Generation of Skid Steer Loaders

Mobile Earth Moving Machinery like Skid-steer loaders have tight turning radius in limited spaces due to a short wheelbase which prevents the use of suspensions in these vehicles. The absence of a suspension system exposes the vehicle to ground vibrations of high magnitude and low frequency. Vibrations reduce operator comfort, productivity and life of components. Along with vibrations, the machine productivity is also hampered by material spillage which is caused by the tilting of the bucket due to the extension of the boom. The first part of the paper focuses on vibration damping. The chassis’ vibrations are reduced by the use of an active suspension element which is the hydraulic boom cylinder which is equivalent to a spring-damper. With this objective, a linear model for the skid steer loader is developed and a state feedback control law is implemented.
Technical Paper

Active Vibration Damping for Construction Machines Based on Frequency Identification

Typically, earthmoving machines do not have wheel suspensions. This lack of components often causes uncomfortable driving, and in some cases reduces machine productivity and safety. Several solutions to this problem have been proposed in the last decades, and particularly successful is the passive solution based on the introduction of accumulators in the hydraulic circuit connecting the machine boom. The extra capacitance effect created by the accumulator causes a magnification of the boom oscillations, in such a way that these oscillations counter-react the machine oscillation caused by the driving on uneven ground. This principle of counter-reacting machine oscillations through the boom motion can be achieved also with electro-hydraulic solutions, properly actuating the flow supply to the boom actuators on the basis of a feedback sensors and a proper control strategy.
Technical Paper

Development of a SIL, HIL and Vehicle Test-Bench for Model-Based Design and Validation of Hybrid Powertrain Control Strategies

Hybrid powertrains with multiple sources of power have generated new control challenges in the automotive industry. Purdue University's participation in EcoCAR 2, an Advanced Vehicle Technology Competition managed by the Argonne National Laboratories and sponsored by GM and DOE, has provided an exciting opportunity to create a comprehensive test-bench for the development and validation of advanced hybrid powertrain control strategies. As one of 15 competing university teams, the Purdue EcoMakers are re-engineering a donated 2013 Chevrolet Malibu into a plug-in parallel- through-the-road hybrid-electric vehicle, to reduce its environmental impact without compromising performance, safety or consumer acceptability. This paper describes the Purdue team's control development process for the EcoCAR 2 competition.
Journal Article

A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines

Excessive vibration and poor controllability occur in many mobile fluid power applications, with negative consequences as concerns operators' health and comfort as well as machine safety and productivity. This paper addresses the problem of reducing oscillations in fluid power machines presenting a novel control technique of general applicability. Strong nonlinearities of hydraulic systems and the unpredictable operating conditions of the specific application (e.g. uneven ground, varying loads, etc.) are the main challenges to the development of satisfactory general vibration damping methods. The state of the art methods are typically designed as a function of the specific application, and in many cases they introduce energy dissipation and/or system slowdown. This paper contributes to this research by introducing an energy efficient active damping method based on feedback signals from pressure sensors mounted on the flow control valve block.
Journal Article

Effects of Controlled Modulation on Surface Textures in Deep-Hole Drilling

Deep-hole drilling is among the most critical precision machining processes for production of high-performance discrete components. The effects of drilling with superimposed, controlled low-frequency modulation - Modulation-Assisted Machining (MAM) - on the surface textures created in deep-hole drilling (ie, gun-drilling) are discussed. In MAM, the oscillation of the drill tool creates unique surface textures by altering the burnishing action typical in conventional drilling. The effects of modulation frequency and amplitude are investigated using a modulation device for single-flute gun-drilling on a computer-controlled lathe. The experimental results for the gun-drilling of titanium alloy with modulation are compared and contrasted with conventional gun-drilling. The chip morphology and surface textures are characterized over a range of modulation conditions, and a model for predicting the surface texture is presented. Implications for production gun-drilling are discussed.
Technical Paper

Modeling and Optimization of the Control Strategy for the Hydraulic System of an Articulated Boom Lift

This paper describes the numerical modeling of the hydraulic circuit of a self-moving boom lift. Boom lifts consist of several hydraulic actuators, each of them performs a specific movement. Hydraulic systems for lifting applications must ensure consistent performance no matter what the load and how many users are in operation at the same time. Common solutions comprise a fixed or a variable displacement pump with load-sensing control strategy. Instead, the hydraulic circuit studied in this paper includes a fixed displacement pump and an innovative (patented) proportional valve assembly. Each proportional valve (one for each user) permits a flow regulation for all typical load conditions and movement simultaneously. The study of the hydraulic system required a detailed modeling of some components such as: the overcenter valves, for the control of the assistive loads; the proportional valve, which keeps a constant flow independently of pressure drop across itself.
Technical Paper

Design of a High-Bandwidth, Low-Cost Hydrostatic Absorption Dynamometer with Electronic Load Control

A low-cost hydrostatic absorption dynamometer has been developed for small to medium sized engines. The dynamometer was designed and built by students to support student projects and educational activities. The availability of such a dynamometer permits engine break-in cycles, performance testing, and laboratory instruction in the areas of engines, fuels, sensors, and data acquisition. The dynamometer, capable of loading engines up to 60kW at 155Nm and 3600rpm, incorporates a two-section gear pump and an electronically operated proportional pressure control valve to develop and control the load. A bypass valve permits the use of only one pump section, allowing increased fidelity of load control at lower torque levels. Torque is measured directly on the drive shaft with a strain gage. Torque and speed signals are transmitted by an inductively-powered collar mounted to the dynamometer drive shaft. Pressure transducers at the pump inlet and pump outlet allow secondary load measurement.
Technical Paper

Characterizing Crop-Waste Loads for Solid-Waste Processing

In long-duration, closed human habitats in space that include crop growth, one challenge that is faced while designing a candidate waste processor is the composition of solid-waste loads, which include human waste, packaging and food-processing materials, crop spoilage, and plant residues. In this work, a new modeling tool is developed to characterize crop residues and food wastes based on diet in order to support the design of solid-waste technologies for closed systems. The model predicts amounts of crop residues and food wastes due to food processing, crop harvests, and edible spoilage. To support the design of solid-waste technologies, the generation of crop residues and food wastes was characterized for a 600-day mission to Mars using integrated menu, crop, and waste models. The three sources of plant residues and food waste are identified to be food processors, crop harvests, and edible spoilage.
Technical Paper

Source Identification Using an Inverse Visible Element Rayleigh Integral Approach

This paper documents an inverse visible element Rayleigh integral (VERI) approach. The VERI is a fast though approximate method for predicting sound radiation that can be used in the place of the boundary element method. This paper extends the method by applying it to the inverse problem where the VERI is used to generate the acoustic transfer matrix relating the velocity on the surface to measurement points. Given measured pressures, the inverse VERI can be used to reconstruct the vibration of a radiating surface. Results from an engine cover and diesel engine indicate that the method can be used to reliably quantify the sound power and also approximate directivity.
Technical Paper

Model-based Development for Event-driven Applications using MATLAB: Audio Playback Case Study

Audio playbacks are mechanisms which read data from a storage medium and produce commands and signals which an audio system turns into music. Playbacks are constantly changed to meet market demands, requiring that the control software be updated quickly and efficiently. This paper reviews a 12 month project using the MATLAB/Simulink/Stateflow environment for model-based development, system simulation, autocode generation, and hardware-in-the-loop (HIL) verification for playbacks which read music CDs or MP3 disks. Our team began with a “clean slate” approach to playback architecture, and demonstrated working units running production-ready code. This modular, layered architecture enables rapid development and verification of new playback mechanisms, thereby reducing the time needed to evaluate playback mechanisms and integrate into a complete infotainment system.
Technical Paper

Water and Energy Transport for Crops under Different Lighting Conditions

When high-intensity discharge (HID) electric lamps are used for plant growth, system inefficiencies occur due to an inability to effectively target light to all photosynthetic tissues of a growing crop stand, especially when it is closed with respect to light penetration. To maintain acceptable crop productivity, light levels typically are increased thus increasing heat loads on the plants. Evapotranspiration (ET) or transparent thermal barrier systems are subsequently required to maintain thermal balance, and power-intensive condensers are used to recover the evaporated water for reuse in closed systems. By accurately targeting light to plant tissues, electric lamps can be operated at lower power settings and produce less heat. With lower power and heat loads, less energy is used for plant growth, and possibly less water is evapotranspired. By combining these effects, a considerable energy savings is possible.