Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Spherical Rod End Test Development and Results

This Paper: 1. Shows that the present spherical rod end manufacturer's rotational tests, which are intended to select the best bearing material, do not necessarily select the best materials for the push/pull linkage requirements of earthmoving machinery. 2. Emphasizes the need to perform push/pull comparative testing as defined in SAE J1367 on spherical rod ends to determine acceptable materials for earthmoving equipment application. This test is in contrast to rotational testing presently being performed by spherical rod end manufacturers.
Technical Paper

Evolution of a Turbine Engine for Industrial Markets

A single-shaft, simple-cycle gas turbine engine has been developed to power 200 kw alternators for standby power and for applications where heat is needed. The engine was designed to be sold and serviced by distributors of earthmoving and industrial machinery. Where feasible, design practices of industrial piston engine powered generator sets were incorporated to facilitate installations of combinations of engine types, and to limit novel and unfamiliar features of the basic turbine engine to those that were considered essential. Individual components and complete engines, initially developed by a research group, have been subjected to a wide variety of laboratory tests to measure performance and develop reliability.
Technical Paper

How A Diesel Engine Rates Itself

SETTING ratings for diesel engines takes laboratory testing and field experience for critical parameters such as smoke, piston temperature, and exhaust temperature. Rating is based upon theoretical considerations, plus the approval of the engine itself. Factors in rating considerations include a knowledge of the application of the engine, and whether its use is to be intermittent or continuous. Ratings by the manufacturer are not always accepted by the engine user, however. The user will run the engine at the load most profitable for him, which may be above or below that recommended by the manufacturer.
Technical Paper

Supercharged Diesel Performance versus Intake and Exhaust Conditions

THIS paper presents results which will answer many of the problems facing an engine manufacturer in the selection of the most suitable types and sizes of superchargers to use with a line of engines. Although performance curves of production model diesels are available, decisions are still needed in choosing peak supercharging pressures, drive means, and size and effectiveness of intercoolers, if any. The author describes the use of a typical model to determine response to variation in intake and exhaust conditions, resulting in data which will assist in evaluating engine potentials with any system of supercharging. Thus, supercharger selection for a particular line of engines is aided by knowledge of engine characteristics as a second-stage compressor.