Refine Your Search

Topic

Author

Search Results

Technical Paper

Wheel Drive Unit Lift Corrections in Automotive Wind Tunnels

2024-04-09
2024-01-2544
Correct simulations of rotating wheels are essential for accurate aerodynamic investigations of passenger vehicles. Therefore, modern automotive wind tunnels are equipped with five-belt moving ground systems with wheel drive units (WDUs) connected to the underfloor balance. The pressure distribution on the exposed areas of the WDU belts results in undesired lift forces being measured which must be considered to obtain accurate lift values for the vehicle. This work investigates the parasitic WDU lift for various configurations of a crossover SUV using numerical simulations that have been correlated to wind tunnel data. Several parameters were considered in the investigation, such as WDU size, WDU placement, tyre variants and vehicle configurations. The results show that the parasitic lift is more sensitive to the width than the length of the WDU. However, the belt length is also important to consider, especially if the wheel cannot be placed centred.
Technical Paper

Target Driven Bushing Design for Wheel Suspension Concept Development

2023-04-11
2023-01-0638
Bushing elasticity is one of the most important compliance factors that significantly influence driving behavior. The deformations of the bushings change the wheel orientations under external forces. Another important factor of bushing compliance is to provide a comfortable driving experience by isolating the vibrations from road irregularities. However, the driving comfort and driving dynamics are often in conflict and need to be balanced in terms of bushing compliance design. Specifically, lateral force steer and brake force steer are closely related to safety and stability and comprises must be minimized. The sensitivity analysis helps engineers to understand the critical bushing for certain compliance attributes, but optimal balancing is complicated to understand. The combination of individual bushing stiffness must be carefully set to achieve an acceptable level of all the attributes.
Technical Paper

Influence of Wheel Drive Unit Belt Width on the Aerodynamics of Passenger Vehicles

2023-04-11
2023-01-0657
Wind tunnels are an essential tool in vehicle development. To simulate the relative velocity between the vehicle and the ground, wind tunnels are typically equipped with moving ground and boundary layer control systems. For passenger vehicles, wind tunnels with five-belt systems are commonly used as a trade-off between accurate replication of the road conditions and uncertainty of the force measurements. To allow different tyre sizes, the wheel drive units (WDUs) can often be fitted with belts of various widths. Using wider belts, the moving ground simulation area increases at the negative cost of larger parasitic lift forces, caused by the connection between the WDUs and the balance. In this work, a crossover SUV was tested with 280 and 360mm wide belts, capturing forces, surface pressures and flow fields. For further insights, numerical simulations were also used.
Technical Paper

Effect of Injection Strategy and EGR on Particle Emissions from a CI Engine Fueled with an Oxygenated Fuel Blend and HVO

2021-04-06
2021-01-0560
Alcohol-based fuels are a viable alternative to fossil fuels for powering vehicles. As a drop-in fuel, an oxygenated fuel blend containing the C8 alcohol 2-ethylhexanol (isomer of octanol), hydrotreated vegetable oil (HVO) and rapeseed methyl ester (RME) can reduce soot and NOx emissions whilst maintaining engine performance. However, fuel injection strategy significantly affects combustion and hence has been investigated with a view to reducing emissions whilst maintaining engine efficiency. In a single cylinder light-duty compression ignition research engine, the effect of different injection strategies (main, main/post, double pre/main, double pre/main/post injection) and EGR levels (0%, 19%) on specifically NOx, soot emissions and particle size distribution was investigated for three different fuels: fossil diesel fuel, HVO and the oxygenated blend. The blend was designed to have diesel-like combustion properties (cetane number of 52) and had an oxygen content of 5.4% by mass.
Technical Paper

Investigation of Seat Suspensions with Embedded Negative Stiffness Elements for Isolating Bus Users’ Whole-Body Vibrations

2021-02-17
2021-01-5019
Bus drivers are a group at risk of often suffering from musculoskeletal problems, such as low-back pain, while bus passengers on the last-row seats experience accelerations of high values. In this paper, the contribution of K-seat in decreasing the above concern is investigated with a detailed simulation study. The K-seat model, a seat with a suspension that functions according to the KDamper concept, which combines a negative stiffness element with a passive one, is benchmarked against the conventional passive seat (PS) in terms of comfort when applied to different bus users’ seats. More specifically, it is tested in the driver’s and two different passengers’ seats, one from the rear overhang and one from the middle part. For the benchmark shake, both are optimized by applying excitations that correspond to real intercity bus floor responses when it drives over a real road profile.
Technical Paper

Water Injection System Application in a Mild Hybrid Powertrain

2020-04-14
2020-01-0798
The potential of 48V Mild Hybrid is promising in meeting the present and future CO2 legislations. There are various system layouts for 48V hybrid system including P0, P1, P2. In this paper, P2 architecture is used to investigate the effects of water injection benefits in a mild hybrid system. Electrification of the conventional powertrain uses the benefits of an electric drive in the low load-low speed region where the conventional SI engine is least efficient and as the load demand increases the IC Engine is used in its more efficient operating region. Engine downsizing and forced induction trend is popular in the hybrid system architecture. However, the engine efficiency is limited by combustion knocking at higher loads thus ignition retard is used to avoid knocking and fuel enrichment becomes must to operate the engine at MBT (Maximum Brake Torque) timing; in turn neutralizing the benefits of fuel savings by electrification.
Technical Paper

CI Methanol and Ethanol combustion using ignition improver

2019-12-19
2019-01-2232
To act on global warming, CO2 emissions must be reduced. This will require a reduction in the use of fossil fuels for transportation. Because of the large quantities of fossil fuels used in transportation, sources of renewable fuels other than biomass will have to be explored, such as electrofuels synthesized from CO2 using renewable electricity. Potential electrofuels include methanol and ethanol, which have shown promising results in SI engines. However, their low cetane numbers make these fuels unsuitable for CI engines because of their poor auto-ignition qualities. The main objective of this study was to evaluate the viability of using methanol and ethanol in CI engines at compression ratios of 16.7 and 20 with a pilot-main injection strategy in the PPC/CI regime. Single cylinder engine tests on a heavy duty engine were performed under medium load conditions (1262 rpm and 172 Nm).
Technical Paper

Multi-Objective Optimization of Fuel Consumption and NOx Emissions with Reliability Analysis Using a Stochastic Reactor Model

2019-04-02
2019-01-1173
The introduction of a physics-based zero-dimensional stochastic reactor model combined with tabulated chemistry enables the simulation-supported development of future compression-ignited engines. The stochastic reactor model mimics mixture and temperature inhomogeneities induced by turbulence, direct injection and heat transfer. Thus, it is possible to improve the prediction of NOx emissions compared to common mean-value models. To reduce the number of designs to be evaluated during the simulation-based multi-objective optimization, genetic algorithms are proven to be an effective tool. Based on an initial set of designs, the algorithm aims to evolve the designs to find the best parameters for the given constraints and objectives. The extension by response surface models improves the prediction of the best possible Pareto Front, while the time of optimization is kept low.
Journal Article

The Effects of Wheel Design on the Aerodynamic Drag of Passenger Vehicles

2019-04-02
2019-01-0662
Approximately 25 % of a passenger vehicle’s aerodynamic drag comes directly or indirectly from its wheels, indicating that the rim geometry is highly relevant for increasing the vehicle’s overall energy efficiency. An extensive experimental study is presented where a parametric model of the rim design was developed, and statistical methods were employed to isolate the aerodynamic effects of certain geometric rim parameters. In addition to wind tunnel force measurements, this study employed the flowfield measurement techniques of wake surveys, wheelhouse pressure measurements, and base pressure measurements to investigate and explain the most important parameters’ effects on the flowfield. In addition, a numerical model of the vehicle with various rim geometries was developed and used to further elucidate the effects of certain geometric parameters on the flow field.
Technical Paper

Dual Fuel Methanol and Diesel Direct Injection HD Single Cylinder Engine Tests

2018-04-03
2018-01-0259
Laws concerning emissions from heavy duty (HD) internal combustion engines are becoming increasingly stringent. New engine technologies are needed to satisfy these new requirements and to reduce fossil fuel dependency. One way to achieve both objectives can be to partially replace fossil fuels with alternatives that are sustainable with respect to emissions of greenhouse gases, particulates and nitrogen oxides (NOx). A suitable candidate is methanol. The aim of the study presented here was to investigate the possible advantages of combusting methanol in a heavy duty Diesel engine. Those are, among others, lower particulate emissions and thereby bypassing the NOx-soot trade-off. Because of methanol’s poor auto-ignition properties, Diesel was used as an igniting sources and both fuels were separately direct injected. Therefore, two separate standard common rail Diesel injection systems were used together with a newly designed cylinder head and adapted injection nozzles.
Technical Paper

Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model

2017-03-28
2017-01-0516
Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.
Journal Article

Impact of Thermal and Chemical Ageing of Fe-BEA SCR Catalyst on NOx Conversion Performance

2016-04-05
2016-01-0946
Emissions of nitrogen oxides (NOx) from heavy-duty diesel engines are subject to more stringent environmental legislation. Selective catalytic reduction (SCR) over metal ion-exchanged zeolites is in this connection an efficient method to reduce NOx. Understanding durability of the SCR catalyst is crucial for correct design of the aftertreatment system. In the present paper, thermal and chemical ageing of Fe-BEA as NH3-SCR catalyst is studied. Experimental results of hydrothermal ageing, and chemical ageing due to phosphorous and potassium exposure are presented. The catalyst is characterized by flow reactor experiments, nitrogen physisorption, DRIFTS, XRD, and XPS. Based on the experimental results, a multisite kinetic model is developed to describe the activity of the fresh Fe-BEA catalyst.
Technical Paper

Surface Flow Visualization on a Full-Scale Passenger Car with Quantitative Tuft Image Processing

2016-04-05
2016-01-1582
Flow visualization techniques are widely used in aerodynamics to investigate the surface trace pattern. In this experimental investigation, the surface flow pattern over the rear end of a full-scale passenger car is studied using tufts. The movement of the tufts is recorded with a DSLR still camera, which continuously takes pictures. A novel and efficient tuft image processing algorithm has been developed to extract the tuft orientations in each image. This allows the extraction of the mean tuft angle and other such statistics. From the extracted tuft angles, streamline plots are created to identify points of interest, such as saddle points as well as separation and reattachment lines. Furthermore, the information about the tuft orientation in each time step allows studying steady and unsteady flow phenomena. Hence, the tuft image processing algorithm provides more detailed information about the surface flow than the traditional tuft method.
Technical Paper

Drive Cycle Particulate and Gaseous Emissions from a Parallel Hybrid Combustion Engine and Electric Powertrain

2015-09-06
2015-24-2538
The emissions from a parallel hybrid combustion engine and electric powertrain operated on a modified New European Drive Cycle (NEDC) was investigated in order to determine the relation between emissions and the road and engine load profile. The effect of simulated electric motor assistance during accelerations on emissions was investigated as a means to reduce particulate and gaseous emissions. The time resolved particulate number and size distribution was measured in addition to gaseous emissions. The combustion engine was a downsized, three cylinder spark ignited direct injection (SIDI) turbocharged engine fuelled with gasoline. Electric motor assistance during accelerations was simulated by reduction of the vehicle mass. This reduced engine load during accelerations. Fuel rich engine transients occurred during accelerations. NOx emissions were reduced with electric assistance due to a reduction in engine load.
Journal Article

Structures of Flow Separation on a Passenger Car

2015-04-14
2015-01-1529
The phenomenon of three-dimensional flow separation is and has been in the focus of many researchers. An improved understanding of the physics and the driving forces is desired to be able to improve numerical simulations and to minimize aerodynamic drag over bluff bodies. To investigate the sources of separation one wants to understand what happens at the surface when the flow starts to detach and the upwelling of the streamlines becomes strong. This observation of a flow leaving the surface could be captured by investigating the limiting streamlines and surface parameters as pressure, vorticity or the shear stress. In this paper, numerical methods are used to investigate the surface pressure and flow patterns on a sedan passenger vehicle. Observed limiting streamlines are compared to the pressure distribution and their correlation is shown. For this investigation the region behind the antenna and behind the wheel arch, are pointed out and studied in detail.
Technical Paper

A 1D Method for Transient Simulations of Cooling Systems with Non-Uniform Temperature and Flow Boundaries Extracted from a 3D CFD Solution

2015-04-14
2015-01-0337
The current work investigates a method in 1D modeling of cooling systems including discretized cooling package with non-uniform boundary conditions. In a stacked cooling package the heat transfer through each heat exchanger depends on the mass flows and temperature fields. These are a result of complex three-dimensional phenomena, which take place in the under-hood and are highly non-uniform. A typical approach in 1D simulations is to assume these to be uniform, which reduces the authenticity of the simulation and calls for additional calibrations, normally done with input from test measurements. The presented work employs 3D CFD simulations of complete vehicle in STAR-CCM+ to perform a comprehensive study of mass-flow and thermal distribution over the inlet of the cooling package of a Volvo FM commercial vehicle in several steady-state operating points.
Journal Article

A Computational Investigation of Ground Simulation for a Saloon Car

2014-04-01
2014-01-0615
Automotive aerodynamics measurements and simulations now routinely use a moving ground and rotating wheels (MVG&RW), which is more representative of on-road conditions than the fixed ground-fixed wheel (FG&FW) alternative. This can be understood as a combination of three elements: (a) moving ground (MVG), (b) rotating front wheels (RWF) and (c) rotating rear wheels (RWR). The interaction of these elements with the flow field has been explored to date by mainly experimental means. This paper presents a mainly computational (CFD) investigation of the effect of RWF and RWR, in combination with MVG, on the flow field around a saloon vehicle. The influence of MVG&RW is presented both in terms of a combined change from a FG&FW baseline and the incremental effects seen by the addition of each element separately. For this vehicle, noticeable decrease in both drag and rear lift is shown when adding MVG&RW, whereas front lift shows little change.
Technical Paper

Effect of Rear-End Extensions on the Aerodynamic Forces of an SUV

2014-04-01
2014-01-0602
Under a global impulse for less man-made emissions, the automotive manufacturers search for innovative methods to reduce the fuel consumption and hence the CO2-emissions. Aerodynamics has great potential to aid the emission reduction since aerodynamic drag is an important parameter in the overall driving resistance force. As vehicles are considered bluff bodies, the main drag source is pressure drag, caused by the difference between front and rear pressure. Therefore increasing the base pressure is a key parameter to reduce the aerodynamic drag. From previous research on small-scale and full-scale vehicles, rear-end extensions are known to have a positive effect on the base pressure, enhancing pressure recovery and reducing the wake area. This paper investigates the effect of several parameters of these extensions on the forces, on the surface pressures of an SUV in the Volvo Cars Aerodynamic Wind Tunnel and compares them with numerical results.
Journal Article

Investigation of the Influence of Tyre Geometry on the Aerodynamics of Passenger Cars

2013-04-08
2013-01-0955
It is well known that wheels are responsible for a significant amount of the total aerodynamic drag of passenger vehicles. Tyres, and mostly rims, have been the subject of research in the automotive industry for the past years, but their effect and interaction with each other and with the car exterior is still not completely understood. This paper focuses on the use of CFD to study the effects of tyre geometry (tyre profile and tyre tread) on road vehicle aerodynamics. Whenever possible, results of the numerical computations are compared with experiments. More than sixty configurations were simulated. These simulations combined different tyre profiles, treads, rim designs and spoke orientation on two car types: a sedan and a sports wagon. Two tyre geometries were obtained directly from the tyre manufacturer, while a third geometry was obtained from our database and represents a generic tyre which covers different profiles of a given tyre size.
Technical Paper

Analysis of Transient Compressible Gas Jets Using High Speed Schlieren Imaging

2013-04-08
2013-01-0871
Transient compressible gas jets, as encountered in direct injection gas fuel engines, have been examined using Schlieren visualization. Helium has been injected into air in a pressure chamber to create the jets examined. The structure of the jets is studied from the mean and coefficient of variation of the penetration length, jet width and jet angle. The quantities are calculated by digital image processing of Schlieren images captured with a high-speed camera. Injection pressure and chamber pressure have been varied to determine whether they have an effect on the response variables. Design of experiments methods have been used to develop the scheme employed in performing the experiments. The mean normalized penetration length of the jets is found to scale with injection to chamber pressure ratio and is in agreement with a momentum conserving relation given in the literature. The dispersion of the penetration length has been found to be in agreement with a normal distribution.
X