Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

SI Engine Combustion and Knock Modelling Using Detailed Fuel Surrogate Models and Tabulated Chemistry

2019-04-02
2019-01-0205
In the context of today’s and future legislative requirements for NOx and soot particle emissions as well as today’s market trends for further efficiency gains in gasoline engines, computational fluid dynamics (CFD) models need to further improve their intrinsic predictive capability to fulfill OEM needs towards the future. Improving fuel chemistry modelling, knock predictions and the modelling of the interaction between the chemistry and turbulent flow are three key challenges to improve the predictivity of CFD simulations of Spark-Ignited (SI) engines. The Flamelet Generated Manifold (FGM) combustion modelling approach addresses these challenges. By using chemistry pre-tabulation technologies, today’s most detailed fuel chemistry models can be included in the CFD simulation. This allows a much more refined description of auto-ignition delays for knock as well as radical concentrations which feed into emission models, at comparable or even reduced overall CFD run-time.
Technical Paper

Optical Diagnostics of Spray Characteristics and Soot Volume Fractions of n-Butanol, n-Octanol, Diesel, and Hydrotreated Vegetable Oil Blends in a Constant Volume Combustion Chamber

2019-01-15
2019-01-0019
The effects of using n-butanol, n-octanol, fossil Diesel, hydrotreated vegetable oil (HVO), and blends of these fuels on spray penetration, flame and soot characteristics were investigated in a high-pressure high-temperature constant volume combustion chamber designed to mimic a heavy duty Diesel engine. Backlight illumination was used to capture liquid and vapor phase spray images with a high-speed camera. The flame lift-off length (LOL) and ignition delay were determined by analyzing OH* chemiluminescence images. Laser extinction diagnostics were used to measure the spatially and temporally resolved soot volume fraction. The spray experiments were performed by injecting fuels under non-combusting (623 K) and combusting (823 K) conditions at a fixed ambient air density of 26 kg/m3. A Scania 0.19 mm single straight hole injector and Scania XPI common rail fuel supply system were used to produce injection pressures of 120 MPa and 180 MPa.
Technical Paper

Spray Characterization of Gasoline Direct Injection Sprays Under Fuel Injection Pressures up to 150 MPa with Different Nozzle Geometries

2019-01-15
2019-01-0063
Maximum fuel injection pressures for GDI engines is expected to increase due to positive effects on emissions and engine-efficiency. Current GDI injectors have maximum operating pressures of 35 MPa, but higher injection pressures have yielded promising reductions in particle number (PN) and improved combustion stability. However, the mechanisms responsible for these effects are poorly understood, and there have been few studies on fuel sprays formed at high injection pressures. This paper summarizes experimental studies on the properties of sprays formed at high injection pressures. The results of these experiments can be used as inputs for CFD simulations and studies on combustion behavior, emissions formation, and combustion system design. The experiments were conducted using an injection rate meter and optical methods in a constant volume spray chamber. Injection rate measurements were performed to determine the injectors’ flow characteristics.
Technical Paper

Supervisory Controller for a Light Duty Diesel Engine with an LNT-SCR After-Treatment System

2018-09-10
2018-01-1767
Look ahead information can be used to improve the powertrain’s fuel consumption while efficiently controlling exhaust emissions. A passenger car propelled by a Euro 6d capable diesel engine is studied. In the conventional approach, the diesel powertrain subsystem control is rule based. It uses no information of future load requests but is operated with the objective of low engine out exhaust emission species until the Exhaust After-Treatment System (EATS) light off has occurred, even if fuel economy is compromised greatly. Upon EATS light off, the engine is operated more fuel efficiently since the EATS system is able to treat emissions effectively. This paper presents a supervisory control structure with the intended purpose to operate the complete powertrain using a minimum of fuel while improving the robustness of exhaust emissions.
Technical Paper

Intrinsic Design of Experiments for Modeling of Internal Combustion Engines

2018-04-03
2018-01-1156
In engine research and development there are often different engine parameters that produce similar effects on the end-point results. When calibrating modern engines, a huge number of parameters needs to be set, which also includes compensation parameters for model imperfections. In this context, simpler, more robust, and physically based models should be beneficial both for calibration work load and powertrain performance. In this study, we present an experimental methodology that uses intermediate (“intrinsic”) variables instead of engine parameters. By using simple thermodynamic models, the engine parameters EGR, IVC, and PBoost could be translated into oxygen concentration, temperature and gas density at the start of injection. The reason for this transformation of data is to “move” the Design of Experiment (DoE) closer to the situation of interest (i.e. the combustion) and to be able to construct simpler and more physically based models.
Technical Paper

LES Investigation of ECN Spray G2 with an Eulerian Stochastic Field Cavitation Model

2018-04-03
2018-01-0291
Due to an ongoing trend of high injection pressures in the realm of internal combustion engines, the role of cavitation that typically happens inside the injector nozzle has become increasingly important. In this work, a large Eddy Simulation (LES) with cavitation modeled on the basis of an Eulerian Stochastic Field (ESF) method and a homogeneous mixture model is performed to investigate the role of cavitation on the Engine Combustion Network (ECN) spray G2. The Eulerian stochastic field cavitation model is coupled to a pressure based solver for the flow, which lowers the computational cost, thereby making the methodology highly applicable to realistic injector geometries. Moreover, the nature of the Eulerian stochastic field method makes it more convenient to achieve a high scalability when applied to parallel cases, which gives the method the edge over cavitation models that are based on Lagrangian tracking.
Technical Paper

Dual Fuel Methanol and Diesel Direct Injection HD Single Cylinder Engine Tests

2018-04-03
2018-01-0259
Laws concerning emissions from heavy duty (HD) internal combustion engines are becoming increasingly stringent. New engine technologies are needed to satisfy these new requirements and to reduce fossil fuel dependency. One way to achieve both objectives can be to partially replace fossil fuels with alternatives that are sustainable with respect to emissions of greenhouse gases, particulates and nitrogen oxides (NOx). A suitable candidate is methanol. The aim of the study presented here was to investigate the possible advantages of combusting methanol in a heavy duty Diesel engine. Those are, among others, lower particulate emissions and thereby bypassing the NOx-soot trade-off. Because of methanol’s poor auto-ignition properties, Diesel was used as an igniting sources and both fuels were separately direct injected. Therefore, two separate standard common rail Diesel injection systems were used together with a newly designed cylinder head and adapted injection nozzles.
Technical Paper

Methodology and Tools to Predict GDI Injector Tip Wetting as Predecessor of Tip Sooting

2018-04-03
2018-01-0286
With upcoming emission regulations particle emissions for GDI engines are challenging engine and injector developers. Despite the introduction of GPFs, engine-out emission should be optimized to avoid extra cost and exhaust backpressure. Engine tests with a state of the art Miller GDI engine showed up to 200% increased particle emissions over the test duration due to injector deposit related diffusion flames. No spray altering deposits have been found inside the injector nozzle. To optimize this tip sooting behavior a tool chain is presented which involves injector multiphase simulations, a spray simulation coupled with a wallfilm model and testing. First the flow inside the injector is analyzed based on a 3D-XRay model. The next step is a Lagrangian spray simulation coupled with a wallfilm module which is used to simulate the fuel impingement on the injector tip and counter-bores.
Technical Paper

Development and Calibration of One Dimensional Engine Model for Hardware-In-The-Loop Applications

2018-04-03
2018-01-0874
The present paper aims at developing an innovative procedure to create a one-dimensional (1D) real-time capable simulation model for a heavy-duty diesel engine. The novelty of this approach is the use of the top-level engine configuration, test cell measurement data, and manufacturer maps as opposite to common practice of utilizing a detailed 1D engine model. The objective is to facilitate effective model adjustments and hence further increase the application of Hardware-in-the-Loop (HiL) simulations in powertrain development. This work describes the development of Fast Running Model (FRM) in GT-SUITE simulation software. The cylinder and gas-path modeling and calibration are described in detail. The results for engine performance and exhaust emissions produced satisfactory agreement with both steady-state and transient experimental data.
Technical Paper

Thermodynamic Cycle and Working Fluid Selection for Waste Heat Recovery in a Heavy Duty Diesel Engine

2018-04-03
2018-01-1371
Thermodynamic power cycles have been shown to provide an excellent method for waste heat recovery (WHR) in internal combustion engines. By capturing and reusing heat that would otherwise be lost to the environment, the efficiency of engines can be increased. This study evaluates the maximum power output of different cycles used for WHR in a heavy duty Diesel engine with a focus on working fluid selection. Typically, only high temperature heat sources are evaluated for WHR in engines, whereas this study also considers the potential of WHR from the coolant. To recover the heat, four types of power cycles were evaluated: the organic Rankine cycle (ORC), transcritical Rankine cycle, trilateral flash cycle, and organic flash cycle. This paper allows for a direct comparison of these cycles by simulating all cycles using the same boundary conditions and working fluids.
Technical Paper

Heavy Duty Diesel Engine Modeling with Layered Artificial Neural Network Structures

2018-04-03
2018-01-0870
In order to meet emissions and power requirements, modern engine design has evolved in complexity and control. The cost and time restraints of calibration and testing of various control strategies have made virtual testing environments increasingly popular. Using Hardware-in-the-Loop (HiL), Volvo Penta has built a virtual test rig named VIRTEC for efficient engine testing, using a model simulating a fully instrumented engine. This paper presents an innovative Artificial Neural Network (ANN) based model for engine simulations in HiL environment. The engine model, herein called Artificial Neural Network Engine (ANN-E), was built for D8-600 hp Volvo Penta engine, and directly implemented in the VIRTEC system. ANN-E uses a combination of feedforward and recursive ANNs, processing 7 actuator signals from the engine management system (EMS) to provide 30 output signals.
Technical Paper

Prediction of the Combustion and Emission Processes in Diesel Engines Based on a Tabulated Chemistry Approach

2017-10-08
2017-01-2200
Turbulent combustion modeling in a RANS or LES context imposes the challenge of closing the chemical reaction rate on the sub-grid level. Such turbulent models have as their two main ingredients sources from chemical reactions and turbulence-chemistry interaction. The various combustion models then differ mainly by how the chemistry is calculated (level of detail, canonical flame model) and on the other hand how turbulence is assumed to affect the reaction rate on the sub-grid level (TCI - turbulence-chemistry interaction). In this work, an advanced combustion model based on tabulated chemistry is applied for 3D CFD (computational fluid dynamics) modeling of Diesel engine cases. The combustion model is based on the FGM (Flamelet Generated Manifold) chemistry reduction technique. The underlying chemistry tabulation process uses auto-ignition trajectories of homogeneous fuel/air mixtures, which are computed with detailed chemical reaction mechanisms.
Technical Paper

Combustion Characteristics for Partially Premixed and Conventional Combustion of Butanol and Octanol Isomers in a Light Duty Diesel Engine

2017-10-08
2017-01-2322
Reducing emissions and improving efficiency are major goals of modern internal combustion engine research. The use of biomass-derived fuels in Diesel engines is an effective way of reducing well-to-wheels (WTW) greenhouse gas (GHG) emissions. Moreover, partially premixed combustion (PPC) makes it possible to achieve very efficient combustion with low emissions of soot and NOx. The objective of this study was to investigate the effect of using alcohol/Diesel blends or neat alcohols on emissions and thermal efficiency during PPC. Four alcohols were evaluated: n-butanol, isobutanol, n-octanol, and 2-ethylhexanol. The alcohols were blended with fossil Diesel fuel to produce mixtures with low cetane numbers (26-36) suitable for PPC. The blends were then tested in a single cylinder light duty (LD) engine. To optimize combustion, the exhaust gas recirculation (EGR) level, lambda, and injection strategy were tuned.
Technical Paper

Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model

2017-03-28
2017-01-0516
Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.
Technical Paper

Development of a Computationally Efficient Progress Variable Approach for a Direct Injection Stochastic Reactor Model

2017-03-28
2017-01-0512
A novel 0-D Probability Density Function (PDF) based approach for the modelling of Diesel combustion using tabulated chemistry is presented. The Direct Injection Stochastic Reactor Model (DI-SRM) by Pasternak et al. has been extended with a progress variable based framework allowing the use of a pre-calculated auto-ignition table. Auto-ignition is tabulated through adiabatic constant pressure reactor calculations. The tabulated chemistry based implementation has been assessed against the previously presented DI-SRM version by Pasternak et al. where chemical reactions are solved online. The chemical mechanism used in this work for both, online chemistry run and table generation, is an extended version of the scheme presented by Nawdial et al. The main fuel species are n-decane, α-methylnaphthalene and methyl-decanoate giving a size of 463 species and 7600 reactions.
Journal Article

Performance Studies and Correlation between Vehicle- and Rapid- Aged Commercial Lean NOx Trap Catalysts

2017-03-28
2017-01-0940
Even though substantial improvements have been made for the lean NOx trap (LNT) catalyst in recent years, the durability still remains problematic because of the sulfur poisoning and sintering of the precious metals at high operating temperatures. Hence, commercial LNT catalysts were aged and tested in order to investigate their performance and activity degradation compared to the fresh catalyst, and establish a proper correlation between the aging methods used. The target of this study is to provide useful information for regeneration strategies and optimize the catalyst management for better performance and durability. With this goal in mind, two different aging procedures were implemented in this investigation. A catalyst was vehicle-aged in the vehicle chassis dynamometer for 100000 km, thus exposed to real conditions. Whereas, an accelerated aging method was used by subjecting a fresh LNT catalyst at 800 °C for 24 hours in an oven under controlled conditions.
Technical Paper

Modeling n-dodecane Spray Combustion with a Representative Interactive Linear Eddy Model

2017-03-28
2017-01-0571
Many new combustion concepts are currently being investigated to further improve engines in terms of both efficiency and emissions. Examples include homogeneous charge compression ignition (HCCI), lean stratified premixed combustion, stratified charge compression ignition (SCCI), and high levels of exhaust gas recirculation (EGR) in diesel engines, known as low temperature combustion (LTC). All of these combustion concepts have in common that the temperatures are lower than in traditional spark ignition or diesel engines. To further improve and develop combustion concepts for clean and highly efficient engines, it is necessary to develop new computational tools that can be used to describe and optimize processes in nonstandard conditions, such as low temperature combustion.
Technical Paper

A Comparison of Drop-In Diesel Fuel Blends Containing Heavy Alcohols Considering Both Engine Properties and Global Warming Potentials

2016-10-17
2016-01-2254
Heavy alcohols can be mixed with fossil diesel to produce blended fuels that can be used in diesel engines. Alcohols can be obtained from fossil resources, but can also be produced more sustainably from renewable raw materials. The use of such biofuels can help to reduce greenhouse gas (GHG) emissions from the transport sector. This study examines four alcohol/diesel blends each containing one heavy alcohol: n-butanol, iso-butanol, 2-ethyl hexanol and n-octanol. All of the blends where prepared to function as drop-in fuels in existing engines with factory settings. To compensate for the alcohols′ low cetane numbers (CN), a third component with high CN was added to each blend, namely hydrotreated vegetable oil (HVO). The composition of each mixture was selected to give an overall CN equal to that of fossil diesel fuel.
Journal Article

Effects of Nozzle Geometry on the Characteristics of an Evaporating Diesel Spray

2016-10-17
2016-01-2197
The effects of nozzle geometry on diesel spray characteristics were studied in a spray chamber under evaporating conditions using three single-hole nozzles, one cylindrical and two convergent, designated N1 (outlet diameter 140 μm, k-factor 0), N2 (outlet diameter 140 μm, k-factor 2) and N3 (outlet diameter 136 μm, k-factor 2). Spray experiments were performed with each nozzle at two constant gas densities (15 and 30 kg/m3) and an ambient temperature (673 K) at which evaporation occurs, with injection pressures ranging from 800 to 1600 bar. A light absorption and scattering method using visible and UV light was implemented, and shadow images of liquid and vapor phase fuel were recorded with high-speed video cameras. The cylindrical nozzle N1 yielded larger local vapor cone angles than the convergent nozzles N2 and N3 at both gas densities, and the difference became larger as the injection pressure increased.
Technical Paper

Temperature Oscillations in the Wall of a Cooled Multi Pulsejet Propeller for Aeronautic Propulsion

2016-09-20
2016-01-1998
Environmental and economic issues related to the aeronautic transport, with particular reference to the high-speed one are opening new perspectives to pulsejets and derived pulse detonation engines. Their importance relates to high thrust to weight ratio and low cost of manufacturing with very low energy efficiency. This papers presents a preliminary evaluation in the direction of a new family of pulsejets which can be coupled with both an air compression system which is currently in pre-patenting study and a more efficient and enduring valve systems with respect to today ones. This new pulsejet has bee specifically studied to reach three objectives: a better thermodynamic efficiency, a substantial reduction of vibrations by a multi-chamber cooled architecture, a much longer operative life by more affordable valves. Another objective of this research connects directly to the possibility of feeding the pulsejet with hydrogen.
X