Refine Your Search

Search Results

Technical Paper

A Two-Zone Model Analysis of Heat Release Rate in Diesel Engines

1997-10-01
972959
A thermodynamic two-zone model which assumes a stoichiornetric burned gas region and unburned air region is presented in an attempt to calculate more precise rate of heat release of diesel combustion. A comparison is made of the rate of heat release obtained by the two-zone model with that obtained by the conventional single-zone model. It shows around 10 % increase in the rate of heat release with the two-zone model. The effect of state equation of gas is also examined with the single-zone model and the use of a real gas law in stead of the perfect gas law is found to yield minor difference in the rate of heat release at a high boost operating condition.
Technical Paper

Heat Transfer From Impinging Diesel Flames to the Combustion Chamber Wall

1997-02-24
970896
The local heat fluxes from impinging combusting and evaporating diesel sprays to the wall of a square combustion chamber were measured in a rapid compression machine. It was revealed that the ratio of local heat flux between the combusting and evaporating spray, q̇c/q̇e, is of the same order of magnitude as (Tc-Tw)/(Te-Tw) and its values estimated by a two-zone model agree roughly with the measured ones. The time-mean local heat flux during the spray impingement was found to be approximately proportional to the 0.8th power of the injection velocity and the heat-transfer phenomenon depends largely on whether the ignition starts before or after the impingement.
Technical Paper

Combustion Enhancement of Very Lean Premixture Part in Stratified Charge Conditions

1996-10-01
962087
Local inhomogeneity of mixture concentration affects combustion characteristics in the lean burn system and also in the stratified charge combustion system. To investigate such combustion systems, the effects of inhomogeneous mixtures were examined using a carefully controlled experimental system. In this study, a constant-volume chamber, which can simulate an idealized stratified charge by using a removable partition inside the chamber, was developed. Flow and combustion characteristics were examined by indicated pressure analysis, Schlieren photography, ion probe measurements and local equivalence ratios measurements while varying the combination of initial equivalence ratios on each side of the partition. As a result, combustion characteristics of charge stratified, very lean propane-air mixture were clarified.
Technical Paper

Ignition, Combustion and Emissions in a DI Diesel Engine Equipped with a Micro-Hole Nozzle

1996-02-01
960321
In an attempt to achieve lean combustion in Diesel engines which has a potential for simultaneous reduction in no and soot, the authors developed a micro-hole nozzle which has orifices with a diameter as small as 0.06 mm. Combustion tests were carried out using a rapid compression-expansion machine which has a DI Diesel type combustion chamber equipped with the micro-hole nozzle. A comparison with the result of a conventional nozzle experiment revealed that the ignition delay was shortened by 30 %, and in spite of that, both peaks of initial premixed combustion and diffusion combustion increased significantly. The combustion in the case of the micro-hole nozzle experiment was accompanied with a decrease in soot emission, whereas an increase in NO emission.
Technical Paper

Development of a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1995-10-01
952514
A rapid compression-expansion machine was developed, which can simulate intake, compression, expansion and exhaust strokes in a single Diesel cycle by an electrically controlled and hydraulically actuated driving system. The whole system which is composed of a hydraulic actuator, fuel injector and a valve driving device, is sequentially controlled by a micro-computer. The machine features; 1) accurate control of piston position at TDC, 2) no effect of lubricant on HC emission due to the use of dry piston rings; 3) independent control of local wall temperature; and 4) high power output to drive heavy piston at high frequency. The single cycle operation permits Diesel combustion experiments under a wide range of operating conditions and easy access of optical diagnostics with minimized amount of test fuel. The performance test showed that the machine can drive a DI Diesel type piston with a 100 mm bore at a maximum frequency of 16.7 Hz at a maximum compression pressure of 15 MPa.
Technical Paper

Numerical Simulation of Turbulent Dispersion of Fuel Droplets in an Unsteady Spray via Discrete Vortex Method

1995-10-01
952433
The turbulent dispersion of particles in an unsteady two dimensional particle-laden jet was simulated by a discrete vortex method coupling with a model of gas/particles interaction. Numerical analysis of a spray yielded the distributions of vorticity, fuel mass concentration and local Sauter mean diameter (SMD) of droplets in a spray. The predicted distribution of local SMD of droplets in a spray demonstrated that the size of droplets in the spray periphery is larger than that of droplets in the center region of spray. This trend of distribution of drop size coincided with that of measured one. The predicted distributions of drop size and vorticity revealed that the larger droplets are easily centrifuged to the periphery of the spray. The effects of the pattern of injection rate on the mixing process in a transient spray were also investigated.
Technical Paper

On the Air-Entrainment Characteristics of Diesel Sprays and Flames in a Quiescent Atmosphere

1994-10-01
941924
Air-entrainment characteristics of non-evaporating sprays and flames were measured by means of high-speed photography including ordinary shadowgraphy of sprays, back diffused light illumination photography and laser shadow photography of flames. Effects of injection pressure and nozzle orifice diameter on air-entrainment characteristics were investigated parametrically. The amount of air entrained into a flame was calculated by a two-zone thermodynamic model with data obtained from the photographs and the pressure measurement in the combustion chamber. The air-entrainment characteristics of flames were compared with those of the corresponding sprays. It showed that immediately after the start of ignition, the air entrainment into a flame increased more rapidly as compared with the corresponding spray and then, with the development of diffusion combustion, the air entrainment gradually approached that of the spray.
Technical Paper

Quantitative Measurement of 2-D Fuel Vapor Concentration in a Transient Spray via Laser-Induced Fluorescence Technique

1994-10-01
941953
A new method to determine simultaneously the temperature and the fuel vapor concentration inside an evaporating spray was described by using a laser-induced fluorescence technique. A TMPD doped base fuel composed of C12H26: 22%, C13H28: 54% and C14H30: 30% was injected into the combustion chamber of a rapid compression machine which is filled with a high temperature and high pressure nitrogen. The laser sheet was used for incident light, which was reflected by a prism located inside the combustion chamber and propagated through the center of an evaporating spray. The laser induced fluorescence intensity was imaged by a high speed-gated intensifier from a direction perpendicular to the incident light. The results shows that mixtures with high equivalence ratio are observed in the central region, while low equivalence ratio mixtures are observed in the periphery of the spray. It is also observed that the temperature of richest mixture is 50 K as low as the surrounding gas temperature.
Technical Paper

Numerical Simulation of Turbulent Mixing in a Transient Jet

1993-10-01
932657
To understand further the mixing process between the injected fuel and air in the combustion chamber of a diesel engine, the turbulent mixing process in a one-phase, two-dimensional transient jet was theoretically studied using the discrete vortex simulation. First, the simulation model was evaluated by comparisons between calculated and experimental data on two-dimensional turbulent jets. Second, the trajectories of the injected fluid elements marked with different colors were graphically demonstrated. Also the process of entrainment of the surrounding fluid into the jet was visually presented using colored tracers.
Technical Paper

2-D Imaging of Fuel Vapor Concentration in a Diesel Spray via Exciplex-Based Fluorescence Technique

1993-10-01
932652
To measure the fuel vapor concentration in an unsteady evaporating spray injected into nitrogen atmosphere, the exciplex-forming method, which produces spectrally separated fluorescence from the liquid and vapor phase, was applied in this study. Two experiments were conducted to investigate the qualitative and quantitative applicability of the technique in a high temperature and high pressure atmosphere during the fuel injection period. One is to examine the thermal decomposition of TMPD dopant at a high temperature and a high pressure nitrogen atmosphere during a short period of time. The other is to calibrate the relationship between fluorescence intensity and vapor concentration of TMPD at different vapor temperatures. And then, the qualitative measurement of fuel vapor concentration distributions in diesel sprays was made by applying the technique.
Technical Paper

Quantitative Measurement of Fuel Vapor Concentration in an Unsteady Evaporating Spray via a 2-D Mie-Scattering Imaging Technique

1993-10-01
932653
The cross-sectional distribution of fuel vapor concentration in an evaporating spray was measured quantitatively by a new scattering imaging technique, silicone particle scattering imaging method, which was proposed in a previous paper[1]. When fuel containing silicone oil injected into a nitrogen environment at high temperature, the volatile base fuel in the droplets vaporized rapidly, leaving behind small droplets of silicone oil suspended in the vapor-gas mixture. The silicone oil droplets were illuminated by a thin laser sheet, and the scattered light was imaged by a CCD camera. The cross-sectional distribution of vapor concentration was estimated from the scattering image of the silicone oil droplets by Mie scattering theory. The results demonstrated clearly the inhomogeneity of the fuel vapor concentration. The distribution of vapor concentration was discontinuous, and islands of rich mixture with a scale of several millimeters existed in the center region of the spray.
Technical Paper

Effects of Flame Motion and Temperature on Local Wall Heat Transfer in a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1992-10-01
922208
Local heat flux from the flame to the combustion chamber wall, q̇, was measured the wall surfaces of a rapid compression-expansion machine which can simulate diesel combustion. Temperature of the flame zone, T1, was calculated by a thermodynamic two-zone model using measured values of cylinder pressure and flame volume. A local heat transfer coefficient was proposed which is defined as q̇/(T1-Tw). Experiments showed that the local heat transfer coefficient depends slightly on the temperature difference, T1-Tw, but depends significantly on the velocity of the flame which contacts the wall surface.
Technical Paper

Mixing Enhancement in Diesel-Like Flames via Flame Impingement on Turbulence-Generating Plates

1992-10-01
922210
Soot concentration is very high in the periphery near the head of an unsteady spray flame which is achieved in a quiescent atmosphere in a rapid compression machine. To reduce soot concentration in this region, it was intended to improve fuel-air mixing by letting the flame impinge on a turbulence-generating plate. Two types of turbulence-generating plates, one donut-type, the other cross-type, were tested. Soot concentration in the flame was imaged using the laser shadow technique. The effect of injection pressure on soot reduction by the flame impingement was also investigated. The overall soot concentration is reduced significantly in the case when the flame impinges on the cross-type turbulence-generating plate at 50 mm (333 nozzle diameters) from the nozzle exit. The flame impingement on the cross-type turbulence-generating plate at 333 nozzle diameters makes soot reduction little dependent on injection pressures.
Technical Paper

A Study of the Structure of Diesel Sprays Using 2-D Imaging Techniques

1992-02-01
920107
The structure of dense sprays was investigated using 2-D imaging techniques. To investigate the mechanism of atomization, the liquid phase in a non-evaporating spray was visualized by a thin laser sheet formed by a single pulse from a Nd:YAG laser at the distance from 4 to 19 mm from the nozzle orifice with the injection pressure and the surrounding gas density as parameters. A new technique for the visualization of vapor phase in an evaporating spray, the SSI (Silicone particle Scattering Imaging) method, was proposed to investigate the structure of the vapor phase regions of the spray.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

2-D Soot Visualization in Unsteady Spray Flame by means of Laser Sheet Scattering Technique

1991-02-01
910223
The two-dimensional distribution of a soot cloud in an unsteady spray flame in a rapid compression machine(RCM) was visualized using the laser sheet scattering technique. A 40 mm x 50 mm cross section on the flame axis was illuminated by a thin laser sheet from a single pulsed Nd:YAG laser(wavelength 532 nm). Scattered light from soot particles was taken by a CCD camera via a high speed gated image intensifier. The temporal variation of the scattered light images were presented with the injection pressure as a parameter. The results showed that scattered light was intense near the periphery of the flame tip and that the scattered light becomes weaker significantly and disappears fast after the end of injection as injection pressure is increased. This technique was also applied to the visualization of the two-dimensional distribution of liquid droplets in the non-evaporating spray to correlate it with the soot concentration distribution.
Technical Paper

A New Technique for the Measurement of Sauter Mean Diameter of Droplets in Unsteady Dense Sprays

1989-02-01
890316
A new technique is developed for the in-situ measurement of Sauter mean diameter of droplets in non-evaporating transient dense sprays. This method analyzes the image of a shadowpicture of a spray based on the incident light extinction principle, and allows the sizing of Sauter mean diameter of whole droplets in a transient spray with any shape. In addition, this method allows the measurement of the local droplet size in a quasi-steady region of an axisymmetric spray if the conservation equations regarding mass and momentum are included in the calculation and data analysis. A calibration was carried out using glass beads as test particles: this was proved to have an accuracy of Sauter mean diameter measurement within 10%, on average. Applications of the new technique to both diesel and gasoline (EFI) sprays have been made.
Technical Paper

Development of a Rapid Compression-Expansion Machine to Simulate Combustion in Diesel Engines

1988-10-01
881640
A rapid compression-expansion machine which can simulate the combustion processes in diesel engines is developed. The configuration of the combustion chamber is a 100 mm bore and a 90 mm stroke, and the compression ratio is 15. The piston is driven by an electro-hydraulic system with a thrust of 90 kN and the maximum frequency of 20 Hz. The whole system composed of a hydraulic actuator, a fuel injection system, and a valve driving unit is sequentially controlled by a computer. The reproducibility of the stop position of the piston at the end of compression is achieved with an accuracy of ±0.1 mm by employing a hydraulic-mechanical brake mechanism. The experiment shows that the combustion in the expansion stroke is achieved, and that the combustion characteristics such as the rate of heat release and indicated output as well as the exhaust emission can be measured.
Technical Paper

High Combustion Temperature for the Reduction of Particulate in Diesel Engines

1988-02-01
880423
Experiments on the effects of temperature T and equivalence ratio ϕ on soot formation at high pressures up to 5 MPa were conducted. The soot formation region is mapped on ϕ-T diagram using the results obtained in the experiments and the published data. NO formation region is also determined by the Zeldovich equations and is plotted on the same diagram. The time histories of ϕ and T of the flame in a DI diesel engine which was obtained by a gas sampling study, are plotted on the ϕ-T diagram to form a trajectory. Discussion of the trajectory in relation to both soot and NO formation region gives suggestion of a possibility of high temperature - rich mixture combustion to reduce particulate formation in diesel engines.
Technical Paper

Effect of High Pressure Injection on Soot Formation Processes in a Rapid Compression Machine to Simulate Diesel Flames

1987-09-01
871610
The characteristics of diesel spray and flame in a quiescent atmosphere were studied as a function of injection pressure ranging from 30 to 110 MPa. Measurements included the spray form and Sauter mean diameter of a non-evaporating spray, the liquid phase penetration of an evaporating spray and the visualization of sooting zone in a flame. Experimental results show that high pressure injection improves the atomization and air entrainment of non-evaporating spray and that the liquid phase penetration of evaporating spray is hardly affected by injection pressure, demonstrating a promotion of evaporation with injection pressure. Visualization of the sooting zone in a flame made it clear that high pressure injection is advantageous in reducing soot formation and shortening the combustion duration.
X