Refine Your Search

Topic

Search Results

Technical Paper

Cause and Effect of Reversible Deactivation of Diesel Oxidation Catalysts

2014-04-01
2014-01-1518
To meet TierII/LEVII emissions standards, light duty diesel (LDD) vehicles require high conversion efficiencies from the Aftertreatment Systems (ATS) for the removal of both Hydrocarbon (HC) and Nitrogen Oxide (NOx) species. The most populous configuration for LDD ATS have the Selective Catalytic Reduction (SCR) catalyst positioned on the vehicle behind the close coupled Diesel Oxidation Catalyst (DOC) and Catalyzed Diesel Particulate Filter (CDPF). This SCR position may require active heating measures which rely on the DOC/CDPF to provide heat through the combustion of HC and CO in the exhaust. Although DOCs are always impacted by their aging conditions, some aging conditions are shown to be both reversible and irreversible.
Technical Paper

Energy Efficient Routing for Electric Vehicles using Particle Swarm Optimization

2014-04-01
2014-01-1815
Growing concerns about the environment, energy dependency, and unstable fuel prices have increased the market share of electric vehicles. This has led to an increased demand for energy efficient routing algorithms that are optimized for electric vehicles. Traditional routing algorithms are focused on finding the shortest distance or the least time route between two points. These approaches have been working well for fossil fueled vehicles. Electric vehicles, on the other hand, require different route optimization techniques. Negative edge costs, battery power and capacity limits, as well as vehicle parameters that are only available at query time, make the task of electric vehicle routing a challenging problem. In this paper, we present a simulated solution to the energy efficient routing for electric vehicles using Particle Swarm Optimization. Simulation results show improvements in the energy consumption of the electric vehicle when applied to a start-to-destination routing problem.
Technical Paper

Calibrating an Adaptive Pivoting Vane Pump to Deliver a Stepped Pressure Profile

2013-04-08
2013-01-1729
This paper presents a process for the selection of spring rate and pre-load for an adaptively controlled pivoting vane oil pump. The pivoting vane pump has two modes: high and low speed. A spring within the pump is installed to induce a torque that causes an adaptive displacement mechanism within the pump to move toward maximum oil chamber size. In low speed mode, two feedback regions are pressurized that produce torques that counter the spring generated torque. Together, both regions being pressurized by main oil gallery pressure tend to reduce pump displacement more at lower speeds than if only a single chamber is pressurized. At higher speeds, a solenoid switch turns off pressure to one of the feedback pressure chambers, thereby reducing feedback torque that counters spring torque. This enables higher pressure calibrations in this speed mode. In this paper, we identify a process for choosing the spring rate and pre-load that calibrates the adaptive displacement mechanism.
Technical Paper

2013 SRT Viper Carbon Fiber X-Brace

2013-04-08
2013-01-1775
The 2013 SRT Viper Carbon Fiber X-Brace, styled by Chrysler's Product Design Office (PDO), is as much of a work of art as it is an engineered structural component. Presented in this paper is the design evolution, development and performance refinement of the composite X-Brace (shown in Figure 1). The single-piece, all Carbon Fiber Reinforced Plastic (CFRP) X-Brace, an important structural component of the body system, was developed from lightweight carbon fiber material to maximize weight reduction and meet performance targets. The development process was driven extensively by virtual engineering, which applied CAE analysis and results to drive the design and improve the design efficiency. Topology optimization and section optimization were used to generate the initial design's shape, form and profile, while respecting the package requirements of the engine compartment.
Journal Article

Statistical Considerations for Evaluating Biofidelity, Repeatability, and Reproducibility of ATDs

2013-04-08
2013-01-1249
Reliable testing of a mechanical system requires the procedures used for the evaluation to be repeatable and reproducible. However, it is never possible to exactly repeat or reproduce the tests that are used for evaluation. To overcome this limitation, a statistical evaluation procedure can generally be used. However, most of the statistical procedures use scalar values as input without the ability to handle vectors or time-histories. To overcome these limitations, two numerical/statistical methods for determining if the impact time-history response of a mechanical system is repeatable or reproducible are evaluated and elaborated upon. Such a system could be a vehicle, a biological human surrogate, an Anthropometric Test Device (ATD or dummy), etc. The responses could be sets of time-histories of accelerations, forces, moments, etc., of a component or of the system. The example system evaluated is the BioRID II rear impact dummy.
Journal Article

Development of a Standard Spin Loss Test Procedure for FWD-Based Power Transfer Units

2013-04-08
2013-01-0361
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of efficiency on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently and provides data to make comparisons. In addition, the procedure offers a reliable process to assess enablers for efficiency improvements. Previous published studies have outlined the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This paper will take the same basic approach for the Power Transfer Units (PTUs) used on Front Wheel Drive (FWD) based All Wheel Drive (AWD) vehicles. Factors included in the assessment include single and multi-stage PTUs, fluid levels, break-in process, and temperature effects.
Technical Paper

EGR Systems Evaluation in Turbocharged Engines

2013-04-08
2013-01-0936
EGR systems are widely applied in modern turbocharged diesel engines to reduce engine-out emissions and will, or are being used to mitigate engine knock in SI engines for improved SI engine efficiency and power. In this paper, different EGR systems are detailed and evaluated theoretically based on the thermodynamics of a turbocharged system featuring an EGR sub-system. Turbine expansion ratio is utilized as a metric to estimate engine efficiency, i.e., pumping losses during the gas exchange process. Approaches such as compressor and turbine bypassing are evaluated as well. Based on above analysis, a new approach is put forward to expand the turbocharger work zone, particularly in the high efficiency regions by correctly utilizing EGR systems at all engine speed range: low-pressure loop EGR system at lower engine speed range and high-pressure loop EGR system at high engine speed range.
Technical Paper

CAE Simulation of Door Sag/Set Using Subsystem Level Approach

2013-04-08
2013-01-1199
The performance of door assembly is very significant for the vehicle design and door sag/set is one of the important attribute for design of door assembly. This paper provides an overview of conventional approach for door sag/set study based on door-hinge-BIW assembly (system level approach) and its limitation over new approach based on subassembly (subsystem level approach). The door sag/set simulation at system level is the most common approach adopted across auto industry. This approach evaluates only structural adequacy of door assembly system for sag load. To find key contributor for door sagging is always been time consuming task with conventional approach thus there is a delay in providing design enablers to meet the design target. New approach of door sag/set at “subsystem level” evaluates the structural stiffness contribution of individual subsystem. It support for setting up the target at subsystem level, which integrate and regulate the system level performance.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Technical Paper

Development of an Analytical Modeling Method and Testing Procedures to Aid in the Design of Cardan Joints for Front Steerable Beam Axles

2013-04-08
2013-01-0819
The Cardan joint of a steerable beam front axle is a complicated mechanical component. It is subjected to drive torque, speed fluctuations, and joint articulation due to powertrain inputs, steering, and suspension kinematics. This combination of high torque and speed fluctuations of the Cardan joint, due to high input drive torque and/or high steer angle maneuvers, can result in premature joint wear. Initially, some observations of premature wear were not well understood based on the existing laboratory and road test data. The present work summarizes a coordinated program of computer modeling, vehicle Rough Road data acquisition, and physical testing used to predict the joint dynamics and to develop advanced testing procedures. Results indicate analytical modeling can predict forces resulting from Cardan joint dynamics for high torque/high turn angle maneuvers, as represented by time history traces recorded in rough road data acquisition.
Technical Paper

Alternative to Hydrogen/Helium as Flame Ionization Detector Fuel

2013-04-08
2013-01-1045
Flame ionization detector (FID) analyzers used in emission testing to measure total hydrocarbon emissions have been operating for the last forty years on a fuel mixture of 40% H₂ and 60% helium. These mixtures were selected based on research studies reported in the literature indicating that this particular mixed fuel combination gave the best sensitivity and relative response of the different hydrocarbons present in vehicle exhaust with respect to propane, the calibration gas. During the past few years, it was announced that there is a worldwide shortage of helium which triggered the automotive industry to look for alternatives for helium to be used in FID fuels. Helium which is produced as a byproduct from natural gas fields is non-renewable, expensive, and extremely rare on the earth. Current supply cannot keep up with demand. There are only few natural gas fields producing helium and unless new natural gas fields are found, current helium amounts will continue to dwindle.
Technical Paper

Multi-Dimensional Modeling and Validation of Combustion in a High-Efficiency Dual-Fuel Light-Duty Engine

2013-04-08
2013-01-1091
Using gasoline and diesel simultaneously in a dual-fuel combustion system has shown effective benefits in terms of both brake thermal efficiency and exhaust emissions. In this study, the dual-fuel approach is applied to a light-duty spark ignition (SI) gasoline direct injection (GDI) engine. Three combustion modes are proposed based on the engine load, diesel micro-pilot (DMP) combustion at high load, SI combustion at low load, and diesel assisted spark-ignition (DASI) combustion in the transition zone. Major focus is put on the DMP mode, where the diesel fuel acts as an enhancer for ignition and combustion of the mixture of gasoline, air, and recirculated exhaust gas. Computational fluid dynamics (CFD) is used to simulate the dual-fuel combustion with the final goal of supporting the comprehensive optimization of the main engine parameters.
Technical Paper

Design Improvements of Urea SCR Mixing for Medium-Duty Trucks

2013-04-08
2013-01-1074
To meet the 2010 diesel engine emission regulations, an aftertreatment system was developed to reduce HC, CO, NOx and soot. In NOx reduction, a baseline SCR module was designed to include urea injector, mixing decomposition tube and SCR catalysts. However, it was found that the baseline decomposition tube had unacceptable urea mixing performance and severe deposit issues largely because of poor hardware design. The purpose of this article is to describe necessary development work to improve the baseline system to achieve desired mixing targets. To this end, an emissions Flow Lab and computational fluid dynamics were used as the main tools to evaluate urea mixing solutions. Given the complicated urea spray transport and limited packaging space, intensive efforts were taken to develop pre-injector pipe geometry, post-injector cone geometry, single mixer design modifications, and dual mixer design options.
Technical Paper

Die Wear Estimation in Automotive Sheet Metal Stamping

2013-04-08
2013-01-1171
Automotive industry's migration to usage of HSS (High Strength Steels), AHSS (Advance High Strength Steels) from conventional steels for their low weight and high strength properties has had its significant effects on die wear. The unpredictability of die wear can pose manufacturing issues, for example, undesirable tool life. Hence die wear has been gaining immense attention and lot of research work has been carried out to provide a die wear prediction method. This paper focuses on the method of estimating wear mathematically based on the mechanics behind die wear phenomenon. This is also an effort to study wear on die for an automotive component in critical areas for which the amount of wear are calculated. This study is further to be correlated with production data from die maintenance record, explicit measurement of die wear, etc., to validate the estimation.
Technical Paper

Impact of Functional Safety on EMC: ISO 26262

2013-04-08
2013-01-0178
The complexity of both hardware and software has increased significantly in automotive over the past decade. This is apparent even in the compact passenger car market segment where the presence of electronic control units (ECU) has nearly tripled. In today's luxury vehicles, software can reach 100 million lines of code and are only projected to increase. Without preventive measures, the risk of safety-related system malfunction becomes unacceptably too high. The functional safety standard ISO 26262, released as first edition in 2011, provides crucial safety-related requirements for passenger vehicles. Although the standard defines the proper development for safety-related systems to ensure the avoidance of a hazard, it's implication for electromagnetic compatibility (EMC) is not clearly defined. This paper outlines the impact of ISO 26262 for EMC related issues, and discusses the standard's implications for EMC requirements on the present EMC practices for production vehicles.
Technical Paper

Charge Motion Analysis to Guide Engine Port Development and Enhance Combustion Stability for High Cooled Exhaust Gas Recirculation

2013-04-08
2013-01-1313
CAE tools are increasingly important in the automotive design process. In part, CAE tools can be useful in reducing the number of physical prototypes required during a product development effort. CFD tools can assess and predict cylinder charge motion for proposed designs, thereby limiting the need for prototype work. Though detailed combustion simulation results could help guide product development, the time required for such simulations limits their usefulness in the context of a production program. However equally valuable information can be obtained from gas exchange analyses which require less computation time and are run only from Intake Valve opening (IVO) to spark timing. Chemical kinetics is not included in this type of analysis. Using this approach, large numbers of configurations can be evaluated in a short period of time. Every passing year automotive engineers are challenged to attain higher fuel economy targets.
Technical Paper

The Effects of Catalytic Converter Location and Palladium Loading on Tailpipe Emissions

2012-04-16
2012-01-1247
Meeting regulated tailpipe emission standards requires a full system approach by automotive engineers encompassing: engine design, combustion system metrics, exhaust heat management, aftertreatment design and exhaust system packaging. Engine and combustion system design targets define desired engine out exhaust constituents, exhaust gas temperatures and oil consumption rates. Protecting required catalytic converter volume in the engine bay for stricter tailpipe emission standards is becoming more difficult. Future fuel economy mandates are leading to vehicle downsizing which is affecting all aspects of vehicle component packaging. In this study, we set out to determine the potential palladium (Pd) cost penalty as a result of increased light-off time required as a catalyst is positioned further away from the engine. Two aged converter systems with different Pd loadings were considered, and EPA FTP-75 emission tested at six different catalyst positions.
Technical Paper

Impact of Ethanol Fuels on Regulated Tailpipe Emissions

2012-04-16
2012-01-0872
Flexible fuel vehicle production has been steadily increasing in the US over the past fifteen years. Ethanol is considered a renewable fuel additive to gasoline which helps the US efforts in minimizing the dependency on foreign oil. As a result, it is becoming very hard to find pure gasoline which does not contain some ethanol content at the pump in the US. The fuel currently available at the pump contains close to 10% ethanol. The fuel and evaporative systems components and materials on newer flexible fuel vehicles are being designed to be tolerant of the 10% ethanol content. There is a strong desire from ethanol producers to increase the ethanol content up to a 20% level. This is still being debated by the Environmental Protection Agency and a final decision has not been made yet but will be announced by the upcoming Tier 3 Notice of Public Rule Making (NPRM) in December of 2011.
Journal Article

Estimation of Individual Cylinder Fuel Air Ratios from a Switching or Wide Range Oxygen Sensor for Engine Control and On-Board Diagnosis

2011-04-12
2011-01-0710
The fuel air ratio imbalance between individual cylinders can result in poor fuel economy and severe exhaust emissions. Individual cylinder fuel air ratio control is one of the important techniques used to improve fuel economy and reduce exhaust emission. California Air Resources Board (CARB) also has required automotive manufacturers to equip with on-board diagnosis system for cylinder fuel air ratio imbalance detection starting in 2011. However, one of the most challenging tasks for the individual cylinder fuel air ratio control and cylinder imbalance diagnosis is how to retrieve the cylinder fuel air ratio information effectively at low cost. This paper presents a novel and practical signal processing based fuel air ratio estimation method for individual cylinder fuel air ratio balance control and on-board fuel air ratio imbalance diagnosis.
Journal Article

Evaluation of Impact of Active Grille Shutter on Vehicle Thermal Management

2011-04-12
2011-01-1172
Due to increased demand for improved fuel economy and reduction in CO2 emissions, active grille shutter (AGS) has been considered as one option to increase fuel economy by reducing vehicle drag resistance. An AGS system will allow airflow through the grille when demand on cooling system or air conditioning system is high. Under conditions of light load and moderate ambient temperatures and humidity, the grille does not have to be fully open. A reduction in the effective grille size opening can be achieved by either partially or fully closing the grille through a stepped speed motor actuator. When the grille opening size is reduced, under-hood airflow will decrease. Therefore, the operating points for the grille shutter should take into account the effect of temperature rise for under-hood and underbody components and the performance of the cooling and climate control systems.
X