Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Lubrication Effects on Automotive Steel Friction between Bending under Tension and Draw Bead Test

2023-04-11
2023-01-0729
Zinc-based electrogalvanized (EG) and hot-dip galvanized (HDGI) coatings have been widely used in automotive body-in-white components for corrosion protection. The formability of zinc coated sheet steels depends on the properties of the sheet and the interactions at the interface between the sheet and the tooling. The frictional behavior of zinc coated sheet steels is influenced by the interfacial conditions present during the forming operation. Friction behavior has also been found to deviate from test method to test method. In this study, various lubrication conditions were applied to both bending under tension (BUT) test and a draw bead simulator (DBS) test for friction evaluations. Two different zinc coated steels; electrogalvanized (EG) and hot-dip galvanized (HDGI) were included in the study. In addition to the coated steels, a non-coated cold roll steel was also included for comparison purpose.
Technical Paper

Springback Prediction and Correlations for Third Generation High Strength Steel

2020-04-14
2020-01-0752
Third generation advanced high strength steels (3GAHSS) are increasingly used in automotive for light weighting and safety body structure components. However, high material strength usually introduces higher springback that affects the dimensional accuracy. The ability to accurately predict springback in simulations is very important to reduce time and cost in stamping tool and process design. In this work, tension and compression tests were performed and the results were implemented to generate Isotropic/Kinematic hardening (I/KH) material models on a 3GAHSS steel with 980 MPa minimum tensile strength. Systematic material model parametric studies and evaluations have been conducted. Case studies from full-scale industrial parts are provided and the predicted springback results are compared to the measured springback data. Key variables affecting the springback prediction accuracy are identified.
Technical Paper

Zebra Line Laser Heat Treated Die Development

2020-04-14
2020-01-0756
The thermal deflection associated with the conventional die heat treating procedure usually requires extra die grinding process to fine-tune the die surface. Due to the size of the production die, the grinding is time consuming and is not cost effective. The goal of the study is to develop a new die heat treating process utilizing the flexible laser heat treatment, which could serve the same purpose as the conventional die heat treating and avoid the thermal deflection. The unique look of the developed zebra pattern laser heat treating process is defined as the Zebra Line. The heat-treating parameters and processes were developed and calibrated to produce the laser heat treating on laboratory size dies, which were subjected to the die wear test in the laboratory condition. The USS HDGI 980 XG3TM steel was selected to be carried out on the developmental dies in the cyclic bend die wear test due to its high strength and coating characteristic.
Technical Paper

Third Generation 980 Class AHSS: A Viable Alternative to Replace Press-Hardenable Steels (PHS) in Automotive Rear Rail Applications

2020-04-14
2020-01-0534
Commercially available Third Generation Advanced High Strength Steels (GEN3 AHSS) are qualified by automakers worldwide. With an excellent combination of strength and ductility, GEN3 AHSS are cold-formable and have shown potential to replace press hardenable steels (PHS) in structural applications. With overall formability equivalent to 590DP, U. S. Steel 980 GEN3 AHSS (980 XG3™ AHSS) may achieve cold-formed component geometries similar to those achieved by hot-formed PHS. Furthermore 980 GEN3 AHSS demonstrates a substantial increase in post-forming yield strength due to the combined effects of work-hardening and bake-hardening-thereby contributing strongly toward crash energy management performance. The technical challenges and attributes of cold-formed 980 GEN3 AHSS are explored in this paper for an automotive rear rail application (currently PHS), including: formability analysis, wrinkling elimination and springback compensation.
Technical Paper

Experimental Characterizations of the Fracture Data of a Third Generation Advanced High Strength Steel

2020-04-14
2020-01-0205
The simulation of a crash event in the design stage of a vehicle facilitates the optimization of crashworthiness and significantly reduces the design cost and time. The development of a fracture material card used in crash simulation is heavily dependent on laboratory testing data. In this paper, the experimental characterization process to generate fracture data for fracture model calibration is discussed. A third-generation advanced high strength steel (AHSS), namely the XG3TM steel, is selected as the example material. For fracture model calibration, fracture locus and load-displacement data are obtained using mechanical testing coupled with digital image correlation (DIC) technique. Test coupons with designed geometries are deformed under different deformation modes including shear, uniaxial tension, plane strain and biaxial stretch conditions. Mini-shear, sub-sized tensile, and Marciniak cup tests are employed to achieve these strain conditions.
Technical Paper

Structural Performance Comparison between 980MPa Generation 3 Steel and Press Hardened Steel Applied in the Body-in-White A and B-Pillar Parts

2020-04-14
2020-01-0537
Commercially available Generation 3 (GEN3) advanced high strength steels (AHSS) have inherent capability of replacing press hardened steels (PHS) using cold stamping processes. 980 GEN3 AHSS is a cold stampable steel with 980 MPa minimum tensile strength that exhibits an excellent combination of formability and strength. Hot forming of PHS requires elevated temperatures (> 800°C) to enable complex deep sections. 980 GEN3 AHSS presents similar formability as 590 DP material, allowing engineers to design complex geometries similar to PHS material; however, its cold formability provides implied potential process cost savings in automotive applications. The increase in post-forming yield strength of GEN3 AHSS due to work and bake hardening contributes strongly toward crash performance in energy absorption and intrusion resistance.
Journal Article

Forming Limit Curves of Advanced High Strength Steels: Experimental Determination and Empirical Prediction

2018-04-03
2018-01-0804
For the past decades, the adoption of empirical equations in the forming limit curve (FLC) calculation for conventional steels has greatly simplified the forming severity assessment in both forming simulations and on the stamping shop floor. Keeler’s equation based on the n-value and sheet thickness is the most popular one used in North America. However, challenges have been encountered on the validity of the equation for advanced high strength steels (AHSS) since Keeler’s equation was developed based on the FLC data mostly from mild steels and conventional high strength steels. In this study, forming limits of various AHSS grades under different strain conditions are experimentally determined using digital image correlation technique. Both Marciniak cup and Nakazima dome tests are exercised to demonstrate the differences in the resultant forming limits determined with different test methods.
Technical Paper

Replacing Press Hardenable Steel with 980 MPa Generation 3 Steel for Automotive Pillars

2018-04-03
2018-01-0117
Press hardenable ultra high strength steel (UHSS) is commonly used for automotive components to meet crash requirements with minimal mass addition to the vehicle. Press hardenable steel (PHS) is capable of forming complex geometries with deep sections since the forming takes place at elevated temperatures up to 900 degrees Celsius (in the Austenitic phase). This forming process is known as hot-stamping. The most commonly used PHS grade is often referred to as PHS1500. After hot-stamping, it is typically required to have a yield strength greater than 950 MPa and a tensile strength greater than 1300 MPa. Most automotive design and material engineers are familiar with PHS, the hot-stamping process, and their capabilities. What is less known is the capability of 3rd Generation advanced high strength steels (AHSS) which are cold stamped, also capable of forming complex geometry, and are now in the process of, or have recently completed, qualification at most automotive manufacturers.
Technical Paper

Residual Stress Distribution in a Hydroformed Advanced High Strength Steel Component: Neutron Diffraction Measurements and Finite Element Simulations

2018-04-03
2018-01-0803
Today’s automotive industry is witnessing increasing applications of advanced high strength steels (AHSS) combined with innovative manufacturing techniques to satisfy fuel economy requirements of stringent environmental regulations. The integration of AHSS in novel automotive structure design has introduced huge advantages in mass reduction while maintaining their structural performances, yet several concerns have been raised for this relatively new family of steels. One of those concerns is their potentially high springback after forming, which can lead to geometrical deviation of the final product from its designed geometry and cause difficulties during assembly. From the perspective of accurate prediction, control and compensation of springback, further understanding on the effect of residual stress in AHSS parts is urged. In this work, the residual stress distribution in a 980GEN3 steel part after hydroforming is investigated via experimental and numerical approaches.
Journal Article

Effects of Punch Configuration on the AHSS Edge Stretchability

2017-03-28
2017-01-1705
The hole piercing process is a simple but important task in manufacturing processes. The quality requirement of the pierced hole varies between different applications. It can be either the size or the edge quality of the hole. Furthermore, the pierced hole is often subject to a secondary forming process, in which the edge stretchability is of a main concern. The recently developed advanced high strength steels (AHSS) and ultra high strength steels (UHSS) have been widely used for vehicle weight reduction and safety performance improvements. Due to the higher strength nature of these specially developed sheet steels, the hole piercing conditions are more extreme and challenging, and the quality of the pierced hole can be critical due to their relatively lower edge stretching limits than those for the conventional low and medium strength steels. The stretchability of the as-sheared edge inside the hole can be influenced by the material property, die condition and processing parameters.
Journal Article

Friction and Die Wear in Stamping Prephospated Advanced High Strength Steels

2016-04-05
2016-01-0356
Prephosphated steels have been developed by applying the phosphate coating on zinc coated sheet steels to increase the lubricity in the automotive stamping process and adding extra corrosion protection. The prephosphate coating was also found to be able to further absorb the lubricant, which can reduce the oil migration and excessive amount of lubricant dripping on the die surface and the press floor. Due to its enhanced lubricity characteristic, the applications have been expanded to more-recently developed advanced high strength steels (AHSS). Because of the higher strength of AHSS, it is crucial to understand their performance under more extreme forming conditions such as higher die temperature, contact pressure and sliding speed, etc. The intent of this study is to investigate the tribological performance and die wear behavior of prephosphated AHSS in the die tryout and production conditions.
Journal Article

Experimental Study of Edge Stretching Limits of DP980IBF Steel in Multistage Forming Process

2015-04-14
2015-01-0525
Automotive structural parts made out of Advanced High Strength Steel (AHSS) are often produced in a multistage forming process using progressive dies or transfer dies. During each forming stage the steel is subjected to work hardening, which affects the formability of the steel in the subsequent forming operation. Edge flanging and in-plane edge stretching operations are forming modes that are typically employed in the last stage of the multistage forming processes. In this study, the multistage forming process was simulated by pre-straining a DP980 steel in a biaxial strain path with various strain levels followed by edge flanging and in-plane edge stretching. The biaxial prestrains were obtained using the Marciniak stretch test and edge flanging and in-plane edge stretching were accomplished by the hole expansion test using a flat punch and a conical punch, respectively.
Journal Article

Design for Six Sigma (DFSS) for Optimization of Automotive Heat Exchanger and Underhood Air Temperature

2014-04-01
2014-01-0729
In this paper a design methodology for automotive heat exchangers has been applied which brings robustness into the design process and helps to optimize the design goals: as to maintain an optimal coolant temperature and to limit the vehicle underhood air temperature within a tolerable limit. The most influential design factors for the heat exchangers which affect the goals have been identified with that process. The paper summarizes the optimization steps necessary to meet the optimal functional goals for the vehicle as mentioned above. Taguchi's [1] Design for Six Sigma (DFSS) methods have been employed to conduct this analysis in a robust way.
Journal Article

Development of Transient Thermal Models Based on Theoretical Analysis and Vehicle Test Data

2014-04-01
2014-01-0726
In this paper, thermal models are developed based on experimental test data, and the physics of thermal systems. If experimental data is available, the data can be fitted to mathematical models that represent the system response to changes in its input parameters. Therefore, empirical models which are based on test data are developed. The concept of time constant is presented and applied to development of transient models. Mathematical models for component temperature changes during transient vehicle driving conditions are also presented. Mathematical models for climate control system warm up and cool-down are also discussed. The results show the significance of adopting this concept in analysis of vehicle test data, and in development of analytical models. The developed models can be applied to simulate the system or component response to variety of changes in input parameters. As a result, significant testing and simulation time can be saved during the vehicle development process.
Journal Article

Optimization of a Porous Ducted Air Induction System Using Taguchi's Parameter Design Method

2014-04-01
2014-01-0887
Taguchi method is a technology to prevent quality problems at early stages of product development and product design. Parameter design method is an important part in Taguchi method which selects the best control factor level combination for the optimization of the robustness of product function against noise factors. The air induction system (AIS) provides clean air to the engine for combustion. The noise radiated from the inlet of the AIS can be of significant importance in reducing vehicle interior noise and tuning the interior sound quality. The porous duct has been introduced into the AIS to reduce the snorkel noise. It helps with both the system layout and isolation by reducing transmitted vibration. A CAE simulation procedure has been developed and validated to predict the snorkel noise of the porous ducted AIS. In this paper, Taguchi's parameter design method was utilized to optimize a porous duct design in an AIS to achieve the best snorkel noise performance.
Journal Article

Thermal Map of an IC Engine via Conjugate Heat Transfer: Validation and Test Data Correlation

2014-04-01
2014-01-1180
Accurate numerical prediction of an engine thermal map at a wide range of engine operating conditions can help tune engine performance parameters at an early development stage. This study documents the correlation of an engine thermal simulation using the conjugate heat transfer (CHT) methodology with thermocouple data from an engine operating in a dynamometer and a vehicle drive cell. Three different operating conditions are matched with the simulation data. Temperatures predicted by simulation at specific sections, both at the intake and the exhaust sides of the engine are compared with the measured temperatures in the same location on the operating engine.
Journal Article

Fatigue Based Lightweight Optimization of a Pickup Cargo Box with Advanced High Strength Steels

2014-04-01
2014-01-0913
Advanced high strength steels (AHSS) offer a good balance of strength, durability, crash energy absorption and formability. Applications of AHSS for lightweight designs of automotive structures are accelerating in recent years to meet the tough new CAFE standard for vehicle fuel economy by 2025. At the same time, the new generation pickup cargo box is to be designed for a dramatic increase in payload. Upgrading the box material from conventional mild steels to AHSS is necessary to meet the conflicting requirements of vehicle light weighting and higher payload. In this paper, typical AHSS grades such as DP590 and DP780 were applied to selected components of the pickup cargo box for weight reduction while meeting the design targets for fatigue, strength and local stiffness.
Technical Paper

Simplified Approach of Chassis Frame Optimization for Durability Performance

2014-04-01
2014-01-0399
In recent trend, there is a huge demand for lightweight chassis frame, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (life) based optimizations are relatively complex, time consuming due to a two-step (Stress then life) virtual engineering process and complicated loading history. However, durability performances are critical in chassis design, so a process of optimization with simplified approach has been developed. This study talks about the process of chassis frame weight optimization without affecting current durability performance where complex durability load cases are converted to equivalent static loadcases and life targets are cascaded down to simple stress target. Sheet metal gauges and lightening holes are the parameters for optimization studies. The optimization design space is constrained to chassis unique parts.
Technical Paper

Assessing the Likelihood of Binding in Distorted Stepped Radius Cylinder Bores

2014-04-01
2014-01-0395
Interference assessments of a stepped-radius power-train component moving within a deformed stepped bore often arise during engine and transmission development activities. For example, when loads are applied to an engine block, the block distorts. This distortion may cause a cam or crankshaft to bind or wear prematurely in its journals as the part rotates within them. Within an automatic transmission valve body, care must be taken to ensure valve body distortion under oil pressure, assembly, and thermal load does not cause spool valves to stick as they translate within the valve body. In both examples, the mechanical scenario to be assessed involves a uniform or stepped radius cylindrical part maintaining a designated clearance through a correspondingly shaped but distorted bore. These distortions can occur in cross-sections (“out-of-round”) or along the bore (in an “s” or “banana” shaped distortions).
Technical Paper

A Scenario-Based Approach to Assess Exposure for ASIL Determination

2014-04-01
2014-01-0211
Exposure in ISO 26262 is defined as the state of being in an operational situation that can be hazardous if coincident with the failure mode under analysis. An operational situation is defined as a scenario that can occur during a vehicle's life with examples given such as driving, parking, or maintenance. Accurately predicting exposure is one of the more difficult tasks in the ASIL determination. ISO 26262 Part 3 attempts to provide guidance in Annex B through tables of potential operational situations and associated exposure levels. However, the contents of these tables may not allow for an accurate prediction of exposure and may lead to an exposure value that is too high or too low. In this paper, we describe a potential method for determining exposure that considers a potential mishap scenario as a composition of multiple coincident operational situations rather than considering a single operational situation as indicated in the tables in Annex B of Part 3.
X