Refine Your Search

Topic

Author

Search Results

Journal Article

CAE Applications and Techniques used in Calculating the Snaps Insertions and Retentions Efforts in Automotive Trims

2014-04-01
2014-01-1032
A snap-fit is a form-fitting joint, which is used to assemble plastic parts together. Snap-fits are available in different forms like a projecting clip, thicker section or legs in one part, and it is assembled to another part through holes, undercuts or recesses. The main function of the snap-fit is to hold the mating components, and it should withstand the vibration and durability loads. Snap-fits are easy to assemble, and should not fail during the assembling process. Based on the design, these joints may be separable or non-separable. The non- separable joints will withstand the loads till failure, while separable joints will withstand only for the design load. The insertion and the retention force calculation for the snaps are very essential for snap-fit design. The finite element analysis plays a very important role in finding the insertion and the retention force values, and also to predict the failure of the snaps and the mating components during this process.
Technical Paper

Stiffness Simulation Techniques and Test Correlations in Automotive Interior Cockpit Systems (IP, Door Trim and Floor Console Assembly)

2014-04-01
2014-01-1025
An automotive cockpit module is a complex assembly, which consists of components and sub-systems. The critical systems in the cockpit module are the instrument panel (IP), the floor console, and door trim assemblies, which consist of many plastic trims. Stiffness is one of the most important parameters for the plastic trims' design, and it should be optimum to meet all the three functional requirements of safety, vibration and durability. This paper presents how the CAE application and various other techniques are used efficiently to predict the stiffness, and the strength of automotive cockpit systems, which will reduce the product development cycle time and cost. The implicit solver is used for the most of the stiffness analysis, and the explicit techniques are used in highly non-linear situations. This paper also shows the correlations of the CAE results and the physical test results, which will give more confidence in product design and reduce the cost of prototype testing.
Journal Article

Ensuring Audio Signal Quality in Automotive Infotainment Systems

2013-04-08
2013-01-0163
In automotive infotainment systems, multiple types of digital audio signals are usually present. Some come from internal sources, such as a CD or USB stick, and some come from external sources, such as an internet stream or digital radio. These sources usually have different sample-rates, and may also be different from one or more system sample-rates. Managing and transporting these signals throughout the system over different sample-rate domains require detailed upfront architecture analysis and correct system design to ensure signal quality is maintained to the desired level. Incorrect design can add significant user-perceivable noise and distortion. This paper examines the key analysis factors, the effects of poor design and the approaches for achieving robust signal handling and ensuring desired signal quality.
Journal Article

A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

2013-04-08
2013-01-0850
Accurate evaluation of vehicles' transient total power requirement helps achieving further improvements in vehicle fuel efficiency. When operated, the air-conditioning (A/C) system is the largest auxiliary load on a vehicle, therefore accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation models, such as "Autonomie," have been used by OEMs to evaluate vehicles' energy performance. However, the load from the A/C system on the engine or on the energy storage system has not always been modeled in sufficient detail. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software MATLAB/Simulink® is frequently used by vehicle controls engineers to develop new and more efficient vehicle energy system controls.
Journal Article

Quality Inspection of Spot Welds using Digital Shearography

2012-04-16
2012-01-0182
Spot Welding is an important welding technique which is widely used in automotive and aerospace industry. One of the keys of checking the quality of the welds is measuring the size of the nugget. In this paper, the Shearographic technique is utilized to test weld joint samples under the thermal loading condition. The goal is to identify the different group of the nuggets (i.e. small, middle, and large sizes, which indicate the quality of spot welds). In the experiments, the sample under test is fixed by a magnet method from behind at the four edges. Thermal loading was applied in the back side and the sample is inspected using the digital Shearographic system in the front side. Results show the great possibility of classifying the nugget size into three groups and the measurement is well repeatable.
Technical Paper

Statistical Modeling of Fatigue Crack Growth in Wing Skin Fastener Holes

2012-04-16
2012-01-0482
Estimation and prediction of residual life and reliability are serious concerns in life cycle management for aging structures. Laboratory testing replicating fatigue loading for a typical military aircraft wing skin was undertaken. Specimens were tested until their fatigue life expended reached 100% of the component fatigue life. Then, scanning electron microscopy was used to quantify the size and location of fatigue cracks within the high stress regions of simulated fastener holes. Distributions for crack size, nearest neighbor distances, and spatial location were characterized statistically in order to estimate residual life and to provide input for life cycle management. Insights into crack initiation and growth are also provided.
Journal Article

Effects of Roller Diameter and Number on Fatigue Lives of Cam Roller Follower Bearings

2011-04-12
2011-01-0489
Effects of roller diameter and number on the contact pressures, subsurface stresses and the fatigue lives of cam roller follower bearings are investigated in this paper. Finite element analyses under plane strain conditions were conducted to identify the effects of the diameter and number of the rolling elements and the thickness of the outer ring. The fatigue life of the inner pin generally increases as the roller diameter increases. But, reducing the number of rollers to accommodate larger rollers does not necessarily increase the fatigue life. The inevitable decrease of the thickness of the outer ring due to the increase of the roller diameter results in the increase of compliance for the outer ring. This increase of compliance leads to excessive deformation of the outer ring and consequently more load must be carried by fewer number of rolling elements.
Technical Paper

Assessment Metric Identification and Evaluation for Side Airbag (SAB) Development

2011-04-12
2011-01-0257
This paper discusses steps for identifying, evaluating and recommending a quantifiable design metric or metrics for Side Airbag (SAB) development. Three functionally related and desirable attributes of a SAB are assumed at the onset, namely, effective SAB coverage, load distribution and efficient energy management at a controlled force level. The third attribute however contradicts the “banana shaped” force-displacement response that characterizes the ineffective energy management reality of most production SAB. In this study, an estimated ATD to SAB interaction energy is used to size and recommend desired force-deformation characteristic of a robust energy management SAB. The study was conducted in the following three phases and corresponding objectives: Phase 1 is a SAB assessment metric identification and estimation, using a uniform block attached to a horizontal impact machine.
Journal Article

Applying Virtual Statistical Modeling for Vehicle Dynamics

2010-04-12
2010-01-0019
Dimensional variation simulation is a computer aided engineering (CAE) method that analyzes the statistical efforts of the component variation to the quality of the final assembly. The traditional tolerance analysis method and commercial CAE software are often based on the assumptions of the rigid part assembly. However, the vehicle functional attributes, such as, ride and handling, NVH, durability and reliability, require understanding the assembly quality under various dynamic conditions while achieving vehicle dimensional clearance targets. This paper presents the methods in evaluating and analyzing the impacts of the assembly variations for the vehicle dynamic performance. Basic linear tolerance stack method and advanced study that applies various CAE tools for the virtual quality analysis in the product and process design will be discussed.
Technical Paper

FEA Predictions and Test Results from Magnesium Beams in Bending and Axial Compression

2010-04-12
2010-01-0405
Finite element analysis (FEA) predictions of magnesium beams are compared to load versus displacement test measurements. The beams are made from AM60B die castings, AM30 extrusions and AZ31 sheet. The sheet and die cast beams are built up from two top hat sections joined with toughened epoxy adhesive and structural rivets. LS-DYNA material model MAT_124 predicts the magnesium behavior over a range of strain rates and accommodates different responses in tension and compression. Material test results and FEA experience set the strain to failure limits in the FEA predictions. The boundary conditions in the FEA models closely mimic the loading and constraint conditions in the component testing. Results from quasi-static four-point bend, quasi-static axial compression and high-speed axial compression tests of magnesium beams show the beam's behavior over a range of loadings and test rates. The magnesium beams exhibit significant material cracking and splitting in all the tests.
Technical Paper

Mechanical and Thermophysical Properties of Magnesium Alloy Extrusions

2010-04-12
2010-01-0410
Magnesium alloy extrusions offer potentially more mass saving compared to magnesium castings. One of the tasks in the United States Automotive Materials Partnership (USAMP) ?Magnesium Front End Research and Development? (MFERD) project is to evaluate magnesium extrusion alloys AM30, AZ31 and AZ61 for automotive body applications. Solid and hollow sections were made by lowcost direct extrusion process. Mechanical properties in tension and compression were tested in extrusion, transverse and 45 degree directions. The tensile properties of the extrusion alloys in the extrusion direction are generally higher than those of conventional die cast alloys. However, significant tension-compression asymmetry and plastic anisotropy need to be understood and captured in the component design.
Technical Paper

Application of Combustion Sound Level (CSL) Analysis for Powertrain

2009-05-19
2009-01-2168
Powertrain noise is a significant factor in determination of the overall vehicle refinement expected by today's discriminating automotive customer. Development of a powertrain to meet these expectations requires a thorough understanding of the contributing noise sources. Specifically, combustion noise greatly impacts the perception of sound levels and quality. The relevance of combustion noise development has increased with the advent of newer efficiency-driven technologies such as direct injection or homogeneous charge compression ignition. This paper discusses the application of a CSL (Combustion Sound Level) analysis-a method for the identification and optimization of combustion noise. Using CSL, it is possible to separate mechanical and combustion noise sources.
Technical Paper

Application of Tuned Mass Damper to Address Discrete Excitation Away From Primary Resonance Frequency of a Structure

2009-05-19
2009-01-2125
Tuned mass dampers (TMDs) or vibration absorbers are widely used in the industry to address various NVH issues, wherein, tactile-vibration or noise mitigation is desired. TMDs can be classified into two categories, namely, tuned-to-resonance and tuned-to-discrete-excitation. An overwhelming majority of TMD applications found in the industry belong to the tuned-to-resonance category, so much of information is available on design considerations of such dampers; however, little is published regarding design considerations of dampers tuned-to-discrete-excitation. During this study, a problem was solved that occurred at a discrete excitation frequency away from the primary resonance frequency of a steering column-wheel assembly. A solution was developed in multiple stages. First the effects of various factors such as mass and damping were analyzed by using a closed-form solution.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Technical Paper

Application of Kinetics of Thermal Degradation for Time-Temperature Analysis of Automotive Components

2009-04-20
2009-01-1178
A fundamental problem in the development of automotive thermal protection strategies is the understanding of the effect of time and temperature on vehicle components life and their performance throughout the life of the vehicle. Due to restrictions on emissions and the stringent requirements for improved fuel economy, the use of polymers and synthetic materials has been widely adopted in automotive applications. It is therefore critical to develop a process to estimate life of engineering materials based on thermal testing and material physical properties. While a series of carefully selected vehicle tests can determine components temperatures during different testing conditions, a need still exists to determine the expected component life and performance throughout the life of the vehicle. Kinetic models have been widely used, in literature, to determine the aging of polymeric and composite materials over time.
Technical Paper

Integration of Photoacoustic Innova Analyzer Within Bag Bench for Direct Measurement of Ethanol in Vehicle Emissions

2009-04-20
2009-01-1518
Ethanol fuel is a sustainable energy resource intended to provide a more environmentally and economically friendly alternative to fossil fuels. Ethanol fuel for automotive applications is becoming increasingly widespread and its market is continuing to grow. Measurement of ethanol was traditionally done with an impinger and a gas chromatograph (GC) system but this method is not a direct measurement, usually requires manual handling and takes a long time for post processing of data. The Innova photoacoustic analyzer can directly measure the ethanol emissions in vehicle exhaust without using the impinger/GC system. For the past eight years at Chrysler, the Innova has been used as a stand alone analyzer and the emission sample bags were physically transported to the chemistry lab for ethanol measurement. The data had to be manually entered and post processed for the final results.
Technical Paper

Production Solutions for Utilization of Both R1234yf and R134a in a Single Global Platform

2009-04-20
2009-01-0172
As global automobile manufacturers prepare for the phase-out of R134a in Europe, they must address the issue of using the new refrigerant for European sales only or launching the product worldwide. Several factors play into this decision, including cost, service, risk, customer satisfaction, capacity, efficiency, etc. This research effort addresses the minimal vehicle-level hardware differences necessary to provide a European solution of R1234yf while continuing to install R134a into vehicles for the rest of the world. It is anticipated that the same compressor, lubricant and condenser; most fluid transport lines; and in most cases the evaporator can be common between the two systems.
Technical Paper

A Method for Obtaining Optimum Fuel Economy Performance using Transient Combustion Measurements

2009-04-20
2009-01-0243
An experiment was conducted testing a powertrain package consisting of a four cylinder four valve engine coupled to a four speed automatic transmission in a dynamometer test cell. Cylinder pressure transducers, an encoder, and other instrumentation were used to measure transient combustion events. The transient cycle chosen for testing was a Cold 80 of the Federal Test Procedure (FTP) that produces a standardized fuel economy value. After analyzing the combustion events, a determination was made between the spark advance delivered and a revised spark advance for optimum combustion efficiency. Based upon the relationship between spark advance and fuel consumption, a prediction for the improved fuel consumption was made. The testing was then repeated to evaluate the revised spark advance and the fuel economy benefits in comparison to the predicted values.
Technical Paper

Lessons Learned for Effective Design Verification

2009-04-20
2009-01-0559
The ultimate goal of reliability engineering is to prevent design failure modes in the field. Effective design verification can be a powerful tool toward achieving this goal. Reducing development time, minimizing cost, and improving quality are further challenges which drive effective design verification. This paper explains the key steps required to develop an effective design verification plan and report (DVP&R). In addition, lessons learned will be discussed using specific examples of undesirable practices. Design for Six Sigma (DFSS) verification phase requirements are also examined.
Technical Paper

FEA Simulation of Induction Hardening and Residual Stress of Auto Components

2009-04-20
2009-01-0418
The paper studies the distributions of residual stresses in auto components after induction hardening. Three prototype parts are analyzed in this paper. Firstly, the temperature fields of the analyzed parts are quantitatively simulated during quenching by simulating surface heating to the austenitization temperature of the material. Secondly, the formation and states of the residual stresses are predicted. Therefore the distribution of residual stress is simulated and shows compressive stresses on the surface of components so that the strength can be improved. The simulated results by computer are compared with experimental results. The good comparison indicates that the results obtained by the FEA analysis are reliable. Thus, it can be concluded that the FEA (Finite element analysis) program is effectively developed to simulate heating and quenching processes and residual stresses distribution.
X