Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Emissions with E85 and Gasolines in Flexible/Variable Fuel Vehicles - The Auto/Oil Air Quality Improvement Research Program

1995-10-01
952508
Exhaust and evaporative emissions from three flexible/variable fuel vehicles (FFV/VFV) were measured as the vehicles operated on E85 fuel (a mixture of 85% ethanol and 15% gasoline) or on gasoline. One vehicle was a production vehicle designed for ethanol fuels and sold in 1992-93 and the other two vehicles were prototypes which were recalibrated 1992 model year methanol FFV's. The gasolines tested were Industry Average Fuel A and a reformulated gasoline Fuel C2 that met California 1996 regulatory requirements. The gasoline component of Fuel E85 was based on the reformulated gasoline. The major findings from this three-vehicle program were that E85 reduced NOx 49% compared to Fuel A and 37% compared to Fuel C2, but increased total toxics 108% (5 mg/mi) and 255% (20 mg/mi), respectively, primarily by increasing acetaldehyde. The NOx effect was significant for both engine-out and tailpipe emissions.
Technical Paper

Effects of Gasoline Composition on Evaporative and Running Loss Emissions - Auto/Oil Air Quality Improvement Research Program

1992-02-01
920323
Evaporative and running loss emissions were measured in a fleet of ten (1 989) current and seven (1983-85) older vehicles with fuels whose compositions varied in aromatic, olefin, and MTBE content and 90 percent distillation temperature (T9O). Emission compositions from each test were analyzed for individual hydrocarbon species. The individual hydrocarbon profiles were used to calculate evaporative and running loss emission reactivities using Carter maximum incremental reactivity (MIR) and maximum ozone reactivity (MOR) scales. Ozone reactivity estimates were expressed as Ozone Forming Potential (gO3/test) and Specific Reactivity (gO3/gNMOG) for both reactivity scales. The data were analyzed by regression analysis to estimate changes in the mass and reactivity of evaporative emissions due to changes in fuel composition. Previous studies have focused on how fuel volatility affects evaporative emissions without regard for the chemical composition of the fuels.
X