Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Fuzzy Logic Approach to Vehicle Stability Control of Oversteer

2011-04-12
2011-01-0268
Traditional Electronic Stability Control (ESC) for automobiles is usually accomplished through the use of estimated vehicle dynamics from simplified models that rely on parameters such as cornering stiffness that can change with the vehicle state and time. This paper proposes a different method for electronic stability control of oversteer by predicting the degree of instability in a vehicle. The algorithm is solely based on measurable response characteristics including lateral acceleration, yaw rate, speed, and driver steering input. These signals are appropriately conditioned and evaluated with fuzzy logic to determine the degree of instability present. When the “degree of instability” passes a certain threshold, the appropriate control action is applied to the vehicle in the form of differential yaw braking. Using only the measured response of the vehicle alleviates the problem of degraded performance when vehicle parameters change.
Technical Paper

Fidelity of Vehicle Models Using Roll Center Principles

2000-03-06
2000-01-0693
The ‘roll center’ concept has existed in vehicle dynamics for decades. However, its application is not commonly well understood. This paper considers roll center concepts in the modeling of a planar (front view) twin-beam suspension. Two roll center models are developed and compared to a third model, developed from the Lagrangian method without reference to a roll center. In addition to discussion of the equations of motion, analysis includes simulation of a ‘cornering’ maneuver. The effects of tire vertical stiffness, jacking forces, and nonlinear kinematics are investigated. Conclusions are drawn regarding the usefulness and accuracy of the roll center modeling.
X