Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Impulsive Dynamics & Noise Energy Modeling

2006-10-16
2006-01-3354
Gear rattle, clunk, and other such noises, commonly referred to as impulsive or unusual noise, are often classified as unique problems without common origins. This paper examines the underlying structure that promotes them and traces physical system behaviors that predispose them to such noises. Though the audible noise itself is not modeled directly, a good deal of the disposable energy that sustains it can be inferred from the impulsive dynamics that underlies the whole process. Further effort quantifies the energies involved and appraises the distinctiveness of the perceived noise. Whether one hears gear rattle or clunk depends on the initiating site within the system and the impulsivity index of the prevailing dynamics. Observable indicators suggest that periodic noise is supported by periodic dynamics and, similarly, impulsive noise, by impulsive dynamics and that the latter is non-deterministic, discontinuous and even chaotic.
Technical Paper

NOx Reduction Kinetics Mechanisms and Radical-Induced Autoignition Potential of EGR in I.C. Engines Using Methanol and Hydrogen

2001-11-01
2001-28-0048
This numerical study examines the chemical-kinetics mechanism responsible for EGR NOx reduction in standard engines. Also, it investigates the feasibility of using EGR alone in hydrogen-air and methanol-air combustion to help generate and retain the same radicals previously found to be responsible for the inducement of the autoignition (in such mixtures) in IC engines with the SONEX Combustion System (SCS) piston micro-chamber. The analysis is based on a detailed chemical kinetics mechanism (for each fuel) that includes NOx production. The mechanism for H-air-NOx combustion makes use of 19 species and 58 reactions while the methanol-air-NOx mechanism is based on the use of 49 species and 227 reactions. It was earlier postulated that the combination of thermal control and charge dilution provided by the EGR produces an alteration in the combustion mechanisms (for both the hydrogen and methanol cases) that lowers peak cycle temperatures-thus greatly reducing the production of NOx.
Technical Paper

Experimental Evaluation of Wind Noise Sources: A Case Study

1999-05-17
1999-01-1812
Several of the authors have recently developed procedures to efficiently evaluate experimentally the relative contributions of various wind noise paths and sources. These procedures are described and, as a case study, results are provided for the noise in the interior of a production automobile subjected to wind tunnel airflow. The present measurements and analysis indicate that for the tested vehicle significant contributions to interior noise are provided by underbody and wheel well flows, radiation from the roof and seal aspiration. A significant tone associated with vortex shedding from the radio antenna was also noted.
Technical Paper

Running Loss Emissions from In-Use Vehicles

1999-05-03
1999-01-1464
The E-35 “Running Loss” program was planned in the fall of 1996, and conducted in the summer of 1997, as the third part of a series of Coordinating Research Council (CRC) sponsored evaporative emission test programs. One hundred and fifty vehicles (half cars - half light duty trucks) were recruited at a local I/M lane, and tested for running loss emissions at the ATL Facility in Mesa, AZ. The previous CRC programs had studied hot soak, and then diurnal emissions. Running loss emissions were measured in a Running Loss SHED (RL-SHED) for a 25 minute, 7.5 mile trip on a hot summer day (95°F). Vehicles from model years 1971 through 1991 were tested. A wide range in emission levels was observed - from a low of 0.13 g/mile to 43 g/mile. The test results were not able to establish whether car emissions are different, or the same, as light duty trucks. The major causes of the high emissions were liquid leaks on carburetor equipped models.
Technical Paper

Mass Measurement of Soil Parameters in Off-Road Locomotion-Wheeled Automated Bewameter (WAB)

1986-09-01
861302
Development of Terrain-Vehicle Systems Analysis involving statistically variable ground, has necessitated the development of field instrumentation for mass measurement of soil parameter input. To this end, the idea originally conceived and tested at U.S. Army's Land Locomotion Laboratory in Detroit, was revived and adapted to modern requirements. The Wheeled Automated Bevameter (WAB) was presented as a better vehicle analog for measuring soil parameters than the conventional plate-shearing instrument hitherto used. It yields itself to mass production of terrain input, without which further progress in Terramechanics, based on statistical changes of the environment may be impossible.
Technical Paper

Analytic Process to Develop a Local Truck Driving Cycle

1982-02-01
821256
Driving cycles have been used in Federal Test Procedures to establish fuel economy and emissions characteristics for automobiles. Reasonable driving cycles for trucks and buses have been more difficult to establish because of the great variety of uses which these vehicles experience. The truck cycle has been divided into three different use categories—the local cycle, the short haul cycle, and the highway cycle. Only recently, has actual field data been obtained, and this paper proposes a method of utilizing this data to develop a more realistic local cycle than those previously proposed.
X