Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of a Super-Light Substrate for LEV III/Tier3 Emission Regulation

With the increasing number of automobiles, the worldwide problem of air pollution is becoming more serious. The necessity of reducing tail-pipe emissions is as high as ever, and in countries all over the world the regulations are becoming stricter. The emissions at times such as after engine cold start, when the three-way catalyst (TWC) has not warmed up, accounts for the majority of the emissions of these pollutants from vehicles. This is caused by the characteristic of the TWC that if a specific temperature is not exceeded, TWC cannot purify the emissions. In other words, if the catalyst could be warmed up at an early stage after engine start, this would provide a major contribution to reducing the emissions. Therefore, this research is focused on the substrate weight and investigated carrying out major weight reduction by making the porosity of the substrate larger than that of conventional products.
Technical Paper

High Porosity Substrates for Fast-Light-Off Applications

Regulations that limit emissions of pollutants from gasoline-powered cars and trucks continue to tighten. More than 75% of emissions through an FTP-75 regulatory test are released in the first few seconds after cold-start. A factor that controls the time to catalytic light-off is the heat capacity of the catalytic converter substrate. Historically, substrates with thinner walls and lower heat capacity have been developed to improve cold-start performance. Another approach is to increase porosity of the substrate. A new material and process technology has been developed to significantly raise the porosity of thin wall substrates (2-3 mil) from 27-35% to 55% while maintaining strength. The heat capacity of the material is 30-38% lower than existing substrates. The reduction in substrate heat capacity enables faster thermal response and lower tailpipe emissions. The reliance on costly precious metals in the washcoat is demonstrated to be lessened.