Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Advanced Mounting System for Light Duty Diesel Filter

2007-04-16
2007-01-0471
This paper employs a systematic approach to packaging design and testing of a system and its components in order to determine the long term durability of light duty diesel filters. This effort has utilized a relatively new aluminum titanate filter technology as well as an advanced support mat technology engineered to provide superior holding force at lower temperatures while maintaining its high temperature performance. Together, these two new technologies form a system that addresses the unique operating conditions of diesel engines. Key physical properties of both the filter and the mat are demonstrated through laboratory testing. The system behavior is characterized by various laboratory techniques and validation procedures.
Technical Paper

Performance Evaluations of Aluminum Titanate Diesel Particulate Filters

2007-04-16
2007-01-0656
Over the past decade, regulations for mobile source emissions have become more stringent thus, requiring advances in emissions systems to comply with the new standards. For the popular diesel powered passenger cars particularly in Europe, diesel particulate filters (DPFs) have been integrated to control particulate matter (PM) emissions. Corning Incorporated has developed a new proprietary aluminum titanate-based material for filter use in passenger car diesel applications. Aluminum titanate (hereafter referred to as AT) filters were launched commercially in the fall of 2005 and have been equipped on more than several hundred thousand European passenger vehicles. Due to their outstanding durability, filtration efficiency and pressure drop attributes, AT filters are an excellent fit for demanding applications in passenger cars. Extensive testing was conducted on engine to evaluate the survivability and long-term thermo-mechanical durability of AT filters.
Technical Paper

Diesel SCR NOx Reduction and Performance on Washcoated SCR Catalysts

2004-03-08
2004-01-1293
This paper describes a study of ternary V2O5/WO3/TiO2 SCR catalysts coated on standard Celcor® and new highly porous cordierite substrates. At temperatures below 275°C, where NOx conversion is kinetically limited, high catalyst loadings are required to achieve high conversion efficiencies. In principle there are two ways to achieve high catalyst loadings: 1. On standard Celcor® substrates the washcoat thickness can be increased. 2. With new highly porous substrates a high amount of washcoat can be deposited in the walls. Various catalyst loadings varying from 120g/l to 540 g/l were washcoated on both standard Celcor® and new high porosity cordierite substrates with standard coating techniques. Simulated laboratory testing of these samples showed that high catalyst loadings improved both low temperature conversion efficiency and high temperature ammonia storage capacity and consequently increased the overall conversion efficiency.
Technical Paper

Ash Storage Concept for Diesel Particulate Filters

2004-03-08
2004-01-0948
Ash accumulation in heavy duty and light duty diesel filters has become a growing concern due to its negative impact on filter performance over time. Performance issues include increased backpressure and increased fuel penalty. An additional concern is frequency of filter ash cleaning which contributes to overall maintenance and operational costs. A new ash storage concept filter is discussed in this paper. This concept proposes an exchange between inlet and outlet cells, redistributing surface area and volume resulting in more ash storage and improved pressure drop over traditional filters. Overall filter performance (pressure drop, regeneration, ash/ceramic interactions) was evaluated in the laboratory and results are reported in this paper. This paper will discuss in detail the ash storage concept and its benefits in filter performance.
Technical Paper

Diesel Emission Control in Review – The Last 12 Months

2003-03-03
2003-01-0039
Driven mainly by tightening of regulations, advance diesel emission control technologies are rapidly advancing. This paper will review the field with the intent of highlighting representative studies that illustrate the state-of-the-art. First, the author makes estimates of the emission control efficiency targets for heavy and light duty applications. Given the emerging significance of ultrafines to health, and to emission control technologies, an overview of the significant developments in ultrafine particulate science is provided, followed by an assessment of filter technology. Major deNOx catalyst developments, in addition to SCR and LNT progress is described. Finally, system integration examples are provided. In general, progress is impressive and studies have demonstrated that high-efficiency systems are within reach in all sectors highway vehicle sectors. Engines are making impressive gains, and will increase the options for emission control.
Technical Paper

Impact of Ultra Thinwall Catalyst Substrates for TIER2 Emission Standards

2003-03-03
2003-01-0658
The impact of ultra thinwall catalysts on TIER2 emission performance, packaging and total system cost was evaluated. The primary focus was to compare ultra-thinwall and thinwall cell configurations (400/3, 400/4, 600/2, 600/3, 600/3 hex, 900/2, and 1200/2) with a baseline 600/4 at constant substrate volume, washcoat and PGM loading. Other areas investigated included the evaluation of decreasing catalyst volume while maintaining constant or increased mass transfer capabilities while holding washcoat and PGM loadings constant. The emissions impact of varying washcoat and PGM loading was measured on specific substrates, including a comparison of square to hex cell. Backpressure for each configuration was calculated with the Corning substrate pressure drop modeling tool. Converters were rapid aged on dynamometers reflecting approximately a 50,000 mile aged performance. Emission testing was completed using the FTP test cycle.
Technical Paper

Review of Development, Properties and Packaging of Thinwall and Ultrathinwall Ceramic Substrates

2002-11-19
2002-01-3578
Driven by the worldwide automotive emission regulations, ceramic substrates were developed to serve as catalyst support. Since the introduction of Standard wall substrates in 1974, substrates with thinner walls and higher cell densities have been developed to meet the tighter emission requirements; Worldwide, the amount of Thinwall and Ultrathinwall substrates in series applications is increasing continuously. The properties of the substrates determine their performance regarding pressure drop, heat-up and conversion efficiency. These properties are analyzed, as well as the packaging process for Thinwall and Ultrathinwall substrates; A new packaging technique with lower pressure load is described.
Technical Paper

Thermal Shock Resistance of Advanced Ceramic Catalysts for Close-Coupled Application

2002-03-04
2002-01-0738
This paper examines the relative thermal shock requirements for ceramic catalysts in underbody vs. close-coupled positions. The higher operating temperature in the latter position may imply higher coefficient of thermal expansion and higher thermal stresses, depending on substrate/washcoat interaction, than those for underbody position. An analysis of thermal stresses, using relevant physical properties and temperature gradients, is presented for both close-coupled and underbody catalysts. Three different high temperature close-coupled catalysts, employing advanced ceramic substrates with 600/3, 600/4 and 900/2 cell structure, and an underbody catalyst with 400/6.5 standard ceramic substrate are examined. Such an analysis is valuable for designing the optimum aspect ratio (length/diameter) and packaging system, which will minimize thermal and mechanical stresses over the desired lifetime of 120K vehicle miles.
Technical Paper

Effect of Windshield Design on High Speed Impact Resistance

2000-10-03
2000-01-2723
An axisymmetric finite element model is generated to simulate the windshield glass damage propagation subjected to impact loading of a flying object. The windshield glass consists of two glass outer layers laminated by a thin poly-vinyl butyral (PVB) layer. The constitutive behavior of the glass layers is simulated using brittle damage mechanics model with linear damage evolution. The PVB layer is modeled with linear viscoelastic solid. The model is used to predict and examine through-thickness damage evolution patterns on different glass surfaces and cracking patterns for different windshield designs such as variations in thickness and curvatures.
X