Refine Your Search



Search Results

Technical Paper

The Thermodynamic Design, Analysis and Test of Cummins’ Supertruck 2 50% Brake Thermal Efficiency Engine System

Current production heavy duty diesel engines have a brake thermal efficiency (BTE) between 43-46% [1]. In partnership with the United States Department of Energy (DOE) as part of the Supertruck 2 program, Cummins has undertaken a research program to develop a new heavy-duty diesel engine designed to deliver greater than 50% BTE without the use of waste heat recovery. A system level optimization focused on: increased compression ratio, higher injection rate, carefully matched highly efficient turbocharging, variable lube oil pump, variable cooling components, and low restriction after treatment designed to deliver 50% BTE at a target development point. This work will also illustrate the system level planning and understanding of interactions required to allow that same 50% BTE heavy duty diesel engine to be integrated with a waste heat recovery (WHR) system to deliver system level efficiency of 55% BTE at a single point.
Journal Article

Model-Based Approaches in Developing an Advanced Aftertreatment System: An Overview

Cummins has recently launched next-generation aftertreatment technology, the Single ModuleTM aftertreatment system, for medium-duty and heavy-duty engines used in on-highway and off-highway applications. Besides meeting EPA 2010+ and Euro VI regulations, the Single ModuleTM aftertreatment system offers 60% volume and 40% weight reductions compared to current aftertreatment systems. In this work, we present model-based approaches that were systematically adopted in the design and development of the Cummins Single ModuleTM aftertreatment system. Particularly, a variety of analytical and experimental component-level and system-level validation tools have been used to optimize DOC, DPF, SCR/ASC, as well as the DEF decomposition device.
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Technical Paper

Durability Test Suite Optimization Based on Physics of Failure

Dynamometer (dyno) durability testing plays a significant role in reliability and durability assessment of commercial engines. Frequently, durability test procedures are based on warranty history and corresponding component failure modes. Evolution of engine designs, operating conditions, electronic control features, and diagnostic limits have created challenges to historical-based testing approaches. A physics-based methodology, known as Load Matrix, is described to counteract these challenges. The technique, developed by AVL, is based on damage factor models for subsystem and component failure modes (e.g. fatigue, wear, degradation, deposits) and knowledge of customer duty cycles. By correlating dyno test to field conditions in quantifiable terms, such as customer equivalent miles, more effective and efficient durability test suites and test procedures can be utilized. To this end, application of Load Matrix to a heavy-duty diesel engine is presented.
Technical Paper

Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines

Diesel engine cylinder deactivation (CDA) can be used to reduce petroleum consumption and greenhouse gas (GHG) emissions of the global freight transportation system. Heavy duty trucks require complex exhaust aftertreatment (A/T) in order to meet stringent emission regulations. Efficient reduction of engine-out emissions require a certain A/T system temperature range, which is achieved by thermal management via control of engine exhaust flow and temperature. Fuel efficient thermal management is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. CDA results in airflow reductions at low loads. Airflow reductions generally result in higher exhaust gas temperatures and lower exhaust flow rates, which are beneficial for maintaining already elevated component temperatures. Airflow reductions also reduce pumping work, which improves fuel efficiency.
Technical Paper

Diesel Engines Gear Whine: Production Plant Perspective

Engine noise is one of the significant aspects of product quality for light and medium duty diesel engine market applications. Gear whine is one of those noise issues, which is considered objectionable and impacts the customer’s perception of the product quality. Gear whine could result due to defects in the gear manufacturing process and/or due to inaccurate design of the gear macro and micro geometry. The focus of this technical paper is to discuss gear whine considerations from the production plant perspective. This includes quick overview of the measurement process, test cell environment, noise acceptance criteria considerations. A gear whine case study is presented based on the data collected in the test cell at the engine plant. Gear whine data acquired on current product and next generation of prototype engines is analyzed and presented. This paper concludes by highlighting the lessons learned from the case study.
Technical Paper

Diesel Engine Noise Source Visualization with Wideband Acoustical Holography

Wideband Acoustical Holography (WBH), which is a monopole-based, equivalent source procedure (J. Hald, “Wideband Acoustical Holography,” INTER-NOISE 2014), has proven to offer accurate noise source visualization results in experiments with a simple noise source: e.g., a loudspeaker (T. Shi, Y. Liu, J.S. Bolton, “The Use of Wideband Holography for Noise Source Visualization”, NOISE-CON 2016). From a previous study, it was found that the advantage of this procedure is the ability to optimize the solution in the case of an under-determined system: i.e., when the number of measurements is much smaller than the number of parameters that must be estimated in the model. In the present work, a diesel engine noise source was measured by using one set of measurements from a thirty-five channel combo-array placed in front of the engine.
Technical Paper

Future Challenges for Engine Manufacturers in View of Future Emissions Legislation

Countries around the world are expected to continue to adopt more stringent emissions standards for heavy-duty markets for both oxides of nitrogen (NOx) and greenhouse gases (GHG). While there is uncertainty about the timing and extent of these regulations, it is clear that significant reductions will be required to address urban air pollution and climate change concerns. The rate and pace of technology evolution and how it will affect the energy pathways for commercial transportation and industrial use are dependent on multiple variables such as national energy and environmental policies and public-private partnerships. Although it adds complexity, the engine system has great potential to evolve as it continues to be highly integrated into the super system for which it is producing power. This paper examines the potential opportunities and challenges for engine manufacturers to continue to be the supplier of power to vehicles and equipment of the future.
Technical Paper

A Full-Cycle Multi-Zone Quasi-Dimensional Direct Injection Diesel Engine Model Based on a Conceptual Model Developed from Imaging Experiments

A quasi-dimensional model for a direct injection diesel engine was developed based on experiments at Sandia National Laboratory. The Sandia researchers obtained images describing diesel spray evolution, spray mixing, premixed combustion, mixing controlled combustion, soot formation, and NOx formation. Dec [1] combined all of the available images to develop a conceptual diesel combustion model to describe diesel combustion from the start of injection up to the quasi-steady form of the jet. The end of injection behavior was left undescribed in this conceptual model because no clear image was available due to the chaotic behavior of diesel combustion. A conceptual end-of-injection diesel combustion behavior model was developed to capture diesel combustion throughout its life span. The compression, expansion, and gas exchange stages are modeled via zero-dimensional single zone calculations.
Technical Paper

Axial NO2 Utilization Measurements within a Partial Flow Filter during Passive Regeneration

Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with alternating open and plugged channels. A SpaciMS [1] instrument was used to measure the axial NO2 profiles within adjacent open and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the open and plugged channels, the axial soot load profile history could be assessed.
Technical Paper

Analytical Evaluation of Integrated Drivetrain NVH Phenomena

This paper demonstrates the use of a system level model that includes torsional models of a Cummins diesel engine and an Allison transmission to study and improve system NVH behavior. The study is a case where the two suppliers of key powertrain components, Cummins Inc. and Allison Transmission Inc., have collaborated to solve an observed NVH problem for a vehicle customer. A common commercial tool, Siemens' AMESim, was used to develop the drivetrain torsional system model. This paper describes a method of modelling and calibration of baseline engine and transmission models to identify the source of vibration. Natural frequencies, modal shapes, and forced response were calculated for each vehicle drive gear ratio to study the torsional vibration. Several parametric studies such as damping, inertia, and stiffness were carried out to understand their impact on torsional vibration of the system.
Technical Paper

Round Robin Noise Measurement System Analysis Using Light Duty Diesel Engine

NVH development of light duty diesel engines require significant collaboration with the OEM as compared to medium duty and heavy duty diesel engines. Typically, competitive benchmark studies and customer expectations define the NVH targets at the vehicle level and are subsequently cascaded down to the powertrain level. For engine manufacturing companies like Cummins Inc., it is imperative to work closely with OEM to deliver on the NVH expectations. In certain situations, engine level NVH targets needs to be demonstrated in the OEM or 3rd party acoustic test facility for customer satisfaction or commercial purposes. Engine noise tests across different noise test facilities may introduce some variation due to differences in the acoustic test facilities, test hardware, instrumentation differences, etc. In addition, the engine itself is a major source of variation.
Journal Article

Perception of Diesel Engine Gear Rattle Noise

Component sound quality is an important factor in the design of competitive diesel engines. One component noise that causes complaints is the gear rattle that originates in the front-of-engine gear train which drives the fuel pump and other accessories. The rattle is caused by repeated tooth impacts resulting from fluctuations in differential torsional acceleration of the driving gears. These impacts generate a broadband, impulsive noise that is often perceived as annoying. In most previous work, the overall sound quality of diesel engines has been considered without specifically focusing on predicting the perception of gear rattle. Gear rattle level has been quantified based on angular acceleration measurements, but those measurements can be difficult to perform. Here, the emphasis was on developing a metric based on subjective testing of the perception of gear rattle.
Journal Article

Simulation of Organic Rankine Cycle Power Generation with Exhaust Heat Recovery from a 15 liter Diesel Engine

The performance of an organic Rankine cycle (ORC) that recovers heat from the exhaust of a heavy-duty diesel engine was simulated. The work was an extension of a prior study that simulated the performance of an experimental ORC system developed and tested at Oak Ridge National laboratory (ORNL). The experimental data were used to set model parameters and validate the results of that simulation. For the current study the model was adapted to consider a 15 liter turbocharged engine versus the original 1.9 liter light-duty automotive turbodiesel studied by ORNL. Exhaust flow rate and temperature data for the heavy-duty engine were obtained from Southwest Research Institute (SwRI) for a range of steady-state engine speeds and loads without EGR. Because of the considerably higher exhaust gas flow rates of the heavy-duty engine, relative to the engine tested by ORNL, a different heat exchanger type was considered in order to keep exhaust pressure drop within practical bounds.
Technical Paper

Development of the Methodology for Quantifying the 3D PM Distribution in a Catalyzed Particulate Filter with a Terahertz Wave Scanner

Optimizing the performance of the aftertreatment system used on heavy duty diesel engines requires a thorough understanding of the operational characteristics of the individual components. Within this, understanding the performance of the catalyzed particulate filter (CPF), and the development of an accurate CPF model, requires knowledge of the particulate matter (PM) distribution throughout the substrate. Experimental measurements of the PM distribution provide the detailed interactions of PM loading, passive oxidation, and active regeneration. Recently, a terahertz wave scanner has been developed that can non-destructively measure the three dimensional (3D) PM distribution. To enable quantitative comparisons of the PM distributions collected under different operational conditions, it is beneficial if the results can be discussed in terms of the axial, radial, and angular directions.
Technical Paper

Multivariable Control of Dual Loop EGR Diesel Engine with a Variable Geometry Turbo

In this paper we consider the issues facing the design of a practical multivariable controller for a diesel engine with dual exhaust gas recirculation (EGR) loops. This engine architecture requires the control of two EGR valves (high pressure and low pressure), an exhaust throttle (ET) and a variable geometry turbocharger (VGT). A systematic approach suitable for production-intent air handling control using Model Predictive Control (MPC) for diesel engines is proposed. Furthermore, the tuning process of the proposed design is outlined. Experimental results for the performance of the proposed design are implemented on a 2.8L light duty diesel engine. Transient data over an LA-4 cycle for the closed loop performance of the controller are included to prove the effectiveness of the proposed design process.
Journal Article

Internal Diesel Injector Deposits: Theory and Investigations into Organic and Inorganic Based Deposits

Over the last two decades, global emission regulations have become more stringent and have required the use of more advanced fuel injection systems. This includes the use of tighter tolerances, more rapid injections and internal components actuated by weaker injection forces. Unfortunately, these design features make the entire system more susceptible to fuel contaminants. Over the last six years, the composition of these contaminants has evolved from hard insoluble debris, such as dust and rocks, to soluble chemical contaminants. Recent research by the diesel engine manufacturers, fuel injection equipment suppliers and the fuel and fuel additive industry has discovered a major source of the soluble chemical contaminant that leads to injector deposits to be derived from cost effective and commonly used additives used to protect against pipeline corrosion.
Journal Article

Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations

With increasing energy prices and concerns about the environmental impact of greenhouse gas (GHG) emissions, a growing number of national governments are putting emphasis on improving the energy efficiency of the equipment employed throughout their transportation systems. Within the U.S. transportation sector, energy use in commercial vehicles has been increasing at a faster rate than that of automobiles. A 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected from 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. and global economies.
Journal Article

Diesel Engine Technologies Enabling Powertrain Optimization to Meet U.S. Greenhouse Gas Emissions

The world-wide commercial vehicle industry is faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. This work focuses on the new U.S. regulation of greenhouse gas (GHG) emissions from commercial vehicles and diesel engines and the most likely technologies to meet future anticipated standards while improving transportation freight efficiency. In the U.S., EPA and NHTSA have issued a joint proposed GHG rule that sets limits for CO2 and other GHGs from pick-up trucks and vans, vocational vehicles, semi-tractors, and heavy duty diesel engines. This paper discusses and compares different technologies to meet GHG regulations for diesel engines based on considerations of cost, complexity, real-world fidelity, and environmental benefit.
Technical Paper

Experimental Investigation of the Oil Pressure Regulator Buzz Noise on Diesel Engines

Due to increasing expectations for gasoline like sound quality, today's diesel engines for light and medium duty automotive markets needs to be carefully designed from NVH perspective. Typical engine operating conditions such as low idle, light tip in, tip out demand more attention as they are more prone to generating sound quality concerns. Any abrupt change in the noise signature may be perceived as a sign of malfunction and could have a potential to generate warranty claims. In this paper, an experimental investigation was carried out to determine the root cause of the transient oil pressure regulator buzz noise which occurred during no load transients at low engine speeds. The root cause of the objectionable noise was found to be associated with the impacts of the regulator plunger on the valve seat at certain engine speeds. Noise and vibration diagnostic tests confirmed that the plunger impacts at the seat caused the objectionable buzz noise.