Refine Your Search

Topic

Author

Search Results

Technical Paper

Multi-Domain Optimization for Fuel Economy Improvement of HD Trucks

2019-04-02
2019-01-0312
Fuel usage negatively impacts the environment and is a significant portion of operational costs of moving freight globally. Reducing fuel consumption is key to lessening environmental impacts and maximizing freight efficiency, thereby increasing the profit margin of logistic operators. In this paper, fuel economy improvements of a cab-over style 49T heavy duty Foton truck powered by a Cummins 12-liter engine are studied and systematically applied for the China market. Most fuel efficiency improvements are found within the vehicle design when compared to opportunities available at the engine level. Vehicle design (improved aerodynamics), component selection/matching (low rolling resistance tires), and powertrain electronic features integration (shift schedule/electronic trim) offer the largest opportunities for lowering fuel consumption.
Technical Paper

Cooling Fan Selection in Power Car Application Using CFD and FEA Analysis

2019-04-02
2019-01-0900
This paper describes the methodology used to select an application-based fan that has optimum operating characteristics in terms of cooling air flow rate, fan power, and noise. The selected fan is then evaluated for structural strength. To evaluate different fans, complete rail coach under-hood simulations were carried out using steady-state 3D computational fluid dynamics (CFD) approach. These simulations considered an actual, highly non-uniform flow field. For each fan option, fan power, air flow rate, and surface acoustic power was evaluated. Pressure profiles on the fan blades were studied to assess the effect of non-uniform downstream air passage designs. Surface acoustic power was calculated using broadband noise source (BNS) model in ANSYS Fluent®. Surface pressure profiles over fan blades imported from 3D CFD were used in finite element analysis (FEA) in ANSYS. Analyses were carried out for blade linear and non-linear properties.
Journal Article

Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis

2019-04-02
2019-01-0263
This study is a continuation of previous work assessing the robustness of a Cummins XPI common rail injection system operating with gasoline-like fuel. All the hardware from the original study was retained except for the high pressure pump head and check valves which were replaced due to cavitation damage. An additional 400 hour NATO cycle was run on the refurbished fuel system to achieve a total exposure time of 800 hours and detect any other significant failure modes. As in the initial investigation, fuel system parameters including pressures, temperatures and flow rates were logged on a test bench to monitor performance over time. Fuel and lubricant samples were taken every 50 hours to assess fuel consistency, metallic wear, and interaction between fuel and oil. High fidelity driving torque and flow measurements were made to compare overall system performance when operating with both diesel and light distillate fuel.
Technical Paper

Gear Interference-Fit Joint Considerations and Design for the Resultant Tooth Distortion

2018-04-03
2018-01-1293
Automotive timing gear trains, transmission gearboxes, and wind turbine gearboxes are some of the application examples known to use interference-fit to attach the gear to the rotating shaft. This paper discusses the interference-fit joint design and the finite element analysis to demonstrate the distortion. The mechanism of tooth profile distortion due to the interference-fit assembly in gear trains is discussed by demonstrating the before and after assembly gear profile measurements. An algorithm to calculate the profile slope deviation change is presented. The effectiveness of the computational algorithm to predict the distortion is demonstrated by comparing with measurements. Finally, steps to mitigate the interference assembly effects are discussed.
Technical Paper

FEM Simulation Methodology for Accurately Capturing the Experimental Vibration Response of ECM Assembly on a Commercial Vehicle

2018-04-03
2018-01-0467
This paper presents an experimental setup and an equivalent FEM simulation methodology to accurately predict the response of Engine Control Module (ECM) assembly mounted on a commercial vehicle subjected to road vibrations. Comprehensive vibration study is carried out. It involved Modal characteristics determination followed by random vibration characterization of the ECM assembly. A hammer impact experiment is first performed in lab to estimate the natural frequencies and mode shapes of ECM assembly. Mounting conditions in test specimen are kept similar to the actual mounting settings on vehicle. Natural frequencies and mode shapes predicted from free vibration experiment are compared with finite element (FE) based modal analysis. The importance of capturing the assembly stiffness more accurately by incorporating pre-stress effects like bolt-pretension and gravity, is emphasized.
Technical Paper

Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines

2018-04-03
2018-01-0384
Diesel engine cylinder deactivation (CDA) can be used to reduce petroleum consumption and greenhouse gas (GHG) emissions of the global freight transportation system. Heavy duty trucks require complex exhaust aftertreatment (A/T) in order to meet stringent emission regulations. Efficient reduction of engine-out emissions require a certain A/T system temperature range, which is achieved by thermal management via control of engine exhaust flow and temperature. Fuel efficient thermal management is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. CDA results in airflow reductions at low loads. Airflow reductions generally result in higher exhaust gas temperatures and lower exhaust flow rates, which are beneficial for maintaining already elevated component temperatures. Airflow reductions also reduce pumping work, which improves fuel efficiency.
Technical Paper

Durability Test Suite Optimization Based on Physics of Failure

2018-04-03
2018-01-0792
Dynamometer (dyno) durability testing plays a significant role in reliability and durability assessment of commercial engines. Frequently, durability test procedures are based on warranty history and corresponding component failure modes. Evolution of engine designs, operating conditions, electronic control features, and diagnostic limits have created challenges to historical-based testing approaches. A physics-based methodology, known as Load Matrix, is described to counteract these challenges. The technique, developed by AVL, is based on damage factor models for subsystem and component failure modes (e.g. fatigue, wear, degradation, deposits) and knowledge of customer duty cycles. By correlating dyno test to field conditions in quantifiable terms, such as customer equivalent miles, more effective and efficient durability test suites and test procedures can be utilized. To this end, application of Load Matrix to a heavy-duty diesel engine is presented.
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

2018-04-03
2018-01-0880
Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Technical Paper

The Application of Acoustic Radiation Modes to Engine Oil Pan Design

2017-06-05
2017-01-1844
In modern engine design, downsizing and reducing weight while still providing an increased amount of power has been a general trend in recent decades. Traditionally, an engine design with superior NVH performance usually comes with a heavier, thus sturdier structure. Therefore, modern engine design requires that NVH be considered in the very early design stage to avoid modifications of engine structure at the last minute, when very few changes can be made. NVH design optimization of engine components has become more practical due to the development of computer software and hardware. However, there is still a need for smarter algorithms to draw a direct relationship between the design and the radiated sound power. At the moment, techniques based on modal acoustic transfer vectors (MATVs) have gained popularity in design optimization for their good performance in sound pressure prediction.
Journal Article

Piston Friction Reduction by Reducting Piston Compression Height for Large Bore Engine Applications

2017-03-28
2017-01-1044
Improving engine efficiency and reducing the total cost of ownership demands engine friction loss reduction through optimal design, especially for large bore application considering the amount of fuel the engine consumes during its service life. Power cylinder is a big source for engine friction and piston accounts for about 25% to 47% of the power cylinder friction [1]. Thus the piston design needs to be optimized to minimize friction; and at the same time, not sacrificing the durability. This work focuses on piston friction reduction by utilizing shorter compression height piston for large bore engine application through analytical simulation study. From the simulation study, 12.5% friction reduction has been achieved in the piston skirt to liner interface for the shorter piston with longer connecting-rod compared to the baseline design.
Technical Paper

A Full-Cycle Multi-Zone Quasi-Dimensional Direct Injection Diesel Engine Model Based on a Conceptual Model Developed from Imaging Experiments

2017-03-28
2017-01-0537
A quasi-dimensional model for a direct injection diesel engine was developed based on experiments at Sandia National Laboratory. The Sandia researchers obtained images describing diesel spray evolution, spray mixing, premixed combustion, mixing controlled combustion, soot formation, and NOx formation. Dec [1] combined all of the available images to develop a conceptual diesel combustion model to describe diesel combustion from the start of injection up to the quasi-steady form of the jet. The end of injection behavior was left undescribed in this conceptual model because no clear image was available due to the chaotic behavior of diesel combustion. A conceptual end-of-injection diesel combustion behavior model was developed to capture diesel combustion throughout its life span. The compression, expansion, and gas exchange stages are modeled via zero-dimensional single zone calculations.
Technical Paper

Analysis and Design Validation of Medium Duty Truck Cooling System

2016-09-27
2016-01-8073
Various 1D simulation tools (KULI & LMS Amesim) and 3D simulation tools (ANSYS FLUENT®) can be used to size and evaluate truck cooling system design. In this paper, ANSYS FLUENT is used to analyze and validate the design of medium duty truck cooling systems. LMS Amesim is used to verify the quality of heat exchanger input data. This paper discusses design and simulation of parent and derivative trucks. As a first step, the parent truck was modeled in FLUENT (using standard' k - ε model) with detailed fan and underhood geometry. The fan is modeled using Multiple Reference Frame (MRF) method. Detailed geometry of heat exchangers is skipped. The heat exchangers are represented by regular shape cell zones with porous medium and dual cell heat exchanger models to account for their contributions to the entire system in both flow and temperature distribution. Good agreement is observed between numerical and experimental engine out temperatures at different engine operating conditions.
Journal Article

Piston Cooling Nozzle Oil Jet Evaluation Using CFD and a High Speed Camera

2016-09-27
2016-01-8100
Piston cooling nozzles/jets play several crucial roles in the power cylinder of an internal combustion engine. Primarily, they help with the thermal management of the piston and provide lubrication to the cylinder liner and the piston’s wrist pin. In order to evaluate the oil jet characteristics from various piston cooling nozzle (PCN) designs, a quantitative and objective process was developed. The PCN characterization began with a computational fluid dynamics (CFD) turbulent model to analyze the mean oil velocity and flow distribution at the nozzle exit/tip. Subsequently, the PCN was tested on a rig for a given oil temperature and pressure. A high-speed camera captured images at 2500 frames per second to observe the evolution of the oil stream as a function of distance from the nozzle exit. An algorithm comprised of standard digital image processing techniques was created to calculate the oil jet width and density.
Journal Article

Multi-Domain Simulation Model of a Wheel Loader

2016-09-27
2016-01-8055
Wheel loader subsystems are multi-domain in nature, including controls, mechanisms, hydraulics, and thermal. This paper describes the process of developing a multi-domain simulation of a wheel loader. Working hydraulics, kinematics of the working tool, driveline, engine, and cooling system are modeled in LMS Imagine.Lab Amesim. Contacts between boom/bucket and bucket/ground are defined to constrain the movement of the bucket and boom. The wheel loader has four heat exchangers: charge air cooler, radiator, transmission oil cooler, and hydraulic oil cooler. Heat rejection from engine, energy losses from driveline, and hydraulic subsystem are inputs to the heat exchangers. 3D CFD modeling was done to calibrate airflows through heat exchangers in LMS Amesim. CFD modeling was done in ANSYS FLUENT® using a standard k - ε model with detailed fan and underhood geometry.
Journal Article

Modeling Approach to Estimate EGR Cooler Thermal Fatigue Life

2015-04-14
2015-01-1654
Cooled EGR continues to be a key technology to meet emission regulations, with EGR coolers performing a critical role in the EGR system. Designing EGR coolers that reliably manage thermal loads is a challenge with thermal fatigue being a top concern. The ability to estimate EGR cooler thermal fatigue life early in the product design and validation cycle allows for robust designs that meet engine component reliability requirements and customer expectations. This paper describes a process to create an EGR cooler thermal fatigue life model. Components which make up the EGR cooler have differing thermal responses, consequently conjugate transient CFD must be used to accurately model metal temperatures during heating and cooling cycles. Those metal temperatures are then imported into FEA software for structural analysis. Results from both the CFD and FEA are then used in a simplified numerical model to estimate the virtual strain of the EGR cooler.
Journal Article

Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations

2013-09-24
2013-01-2421
With increasing energy prices and concerns about the environmental impact of greenhouse gas (GHG) emissions, a growing number of national governments are putting emphasis on improving the energy efficiency of the equipment employed throughout their transportation systems. Within the U.S. transportation sector, energy use in commercial vehicles has been increasing at a faster rate than that of automobiles. A 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected from 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. and global economies.
Journal Article

Diesel Engine Technologies Enabling Powertrain Optimization to Meet U.S. Greenhouse Gas Emissions

2013-09-08
2013-24-0094
The world-wide commercial vehicle industry is faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. This work focuses on the new U.S. regulation of greenhouse gas (GHG) emissions from commercial vehicles and diesel engines and the most likely technologies to meet future anticipated standards while improving transportation freight efficiency. In the U.S., EPA and NHTSA have issued a joint proposed GHG rule that sets limits for CO2 and other GHGs from pick-up trucks and vans, vocational vehicles, semi-tractors, and heavy duty diesel engines. This paper discusses and compares different technologies to meet GHG regulations for diesel engines based on considerations of cost, complexity, real-world fidelity, and environmental benefit.
Technical Paper

Finite Element Method Based Fatigue Analysis of a Gray Cast Iron Component

2013-04-08
2013-01-1205
Good understanding and accurate prediction of component fatigue strength is crucial in the development of modern engine. In this paper a detail analysis was conducted on an engine component made of gray cast iron with finite element method to evaluate the fatigue strength. This component has notches that cause local stress concentration. It is well known that fatigue behavior of a notch is not uniquely defined by the local maximum stress but depends on other factors determined by notch geometry and local stress distribution. The component fatigue strength was underestimated by only considering the stresses on the notch surface for fatigue life prediction. The critical distance approach was adopted to predict the fatigue behavior of this component. Good agreements are observed between predicted life by the critical distance method and actual field data.
Technical Paper

Application of Artificial Neural Networks to Aftertreatment Thermal Modeling

2012-04-16
2012-01-1302
Accurate estimation of catalyst bed temperatures is very crucial for effective control and diagnostics of aftertreatment systems. The architecture of most aftertreatment systems contains temperature sensors for measuring the exhaust gas temperatures at the inlet and outlet of the aftertreatment systems. However, the temperature that correctly reflects the temperature of the chemical reactions taking place on the catalyst surface is the catalyst bed temperature. From the Arrhenius relationship which governs the chemical reaction kinetics occurring in different aftertreatment systems, the rate of chemical reaction is very sensitive to the reaction temperature. Considerable changes in tailpipe emissions can result from small changes in the reaction temperature and robust emissions control systems should be able to compensate for these changes in reaction temperature to achieve the desired tailpipe emissions.
Technical Paper

Design and Validation of a New 13L Heavy-Duty Diesel Engine Using Analysis-Led Design

2008-10-07
2008-01-2673
The paper covers the design and development of a new 13L heavy-duty diesel engine. It describes in detail some of the design techniques that were used. To meet these exacting requirements, extensive use was made of Analysis-Led Design, which allows components, sub-systems and the entire engine, aftertreatment and vehicle system to be modeled before designs are taken to prototype hardware. This enables a level of system and sub-system optimization not previously available. The engine was designed primarily for on-highway use in China, and the paper describes the emissions strategy for China, and the physical design strategy for the new engine, and provides some engine performance robustness details. The engine architecture is discussed and the paper details the analysis of the major components - cylinder block, head, head seal, power cylinder, bearings and camshaft drive.
X