Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

System Level Simulation of H2 ICE after Treatment System

2024-04-09
2024-01-2625
Hydrogen Internal Combustion Engines (H2 ICE) are gaining recognition as a nearly emission-free alternative to traditional ICE engines. However, H2 ICE systems face challenges related to thermal management, N2O emissions, and reduced SCR efficiency in high humidity conditions (15% H2O). This study assesses how hydrogen in the exhaust affects after-treatment system components for H2 ICE engines, such as Selective Catalytic Reduction (SCR), Hydrogen Oxidation Catalyst (HOC), and Ammonia Slip Catalyst (ASC). Steady-state experiments with inlet H2 inlet concentrations of 0.25% to 1% and gas stream moisture levels of up to 15% H2O were conducted to characterize the catalyst response to H2 ICE exhaust. The data was used to calibrate and validate system component models, forming the basis for a system simulation.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part I: Accelerated Ash Loading and DPF Performance Evaluation

2023-04-11
2023-01-0297
The project objective was to generate experimental data to evaluate the impact of metals doped B20 on DPF ash loading and performance compared to that of conventional petrodiesel. Accelerated ash loading was conducted on two DPFs – one exposed to regular diesel fuel and the other to B20 containing metal dopants equivalent to 4 ppm B100 total metals (currently total metals are limited to 10 ppm in ASTM D6751, the standard for B100). Periodic performance evaluations were conducted on the DPFs at 10 g/L ash loading intervals. After the evaluations at 30 g/L, the DPF was cleaned with a commercial DPF cleaning machine and another round of DPF evaluations were conducted. A comparison of the effect of ash loading with the two fuels and DPF cleaning is presented. The metals doped B20 fuel resulted in ash that was similar to that deposited when exposed to ULSD (lube oil ash) and exhibited similar ash cleaning removal efficiency.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part II: Chemical and Microscopic Characterization of Aged DPFs

2023-04-11
2023-01-0296
This project’s objective was to generate experimental data to evaluate the impact of metals doped B20 on diesel particle filter (DPF) ash loading and performance compared to that of conventional petrodiesel. The effect of metals doped B20 vs. conventional diesel on a DPF was quantified in a laboratory controlled accelerated ash loading study. The ash loading was conducted on two DPFs – one using ULSD fuel and the other on B20 containing metals dopants equivalent to 4 ppm B100 total metals. Engine oil consumption and B20 metals levels were accelerated by a factor of 5, with DPFs loaded to 30 g/L of ash. Details of the ash loading experiment and on-engine DPF performance evaluations are presented in the companion paper (Part I). The DPFs were cleaned, and ash samples were taken from the cleaned material. X-ray Fluorescence (XRF), X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD) were conducted on the ash samples.
Technical Paper

Reduced Power Cylinder Friction with Advanced Coatings and Optimized Lubricants

2022-03-29
2022-01-0523
The engine power cylinder is comprised of the piston, piston rings, and cylinder. It accounts for a significant amount of total engine friction within reciprocating, internal combustion engines. Reducing power cylinder friction is key to the development of efficient internal combustion engines. However, isolating individual power cylinder tribocouples for detailed analysis can be challenging. In this work, a new reciprocating liner test rig is developed and introduced. The rig design is novel, using a stationary piston and a reciprocating cylinder liner. Friction is calculated from the force measured in the connecting rod which supports the piston. The rig allows for independent control of peak cylinder pressure, speed, and lubricant temperature. Using the newly developed test rig, several technologies for friction reduction are evaluated and compared.
Technical Paper

Unregulated Emissions Characterization and Comparison for Two Off-Road Applications: A DPF and Non-DPF Engine

2022-03-29
2022-01-0587
As governmental agencies focus on low levels of the oxides of nitrogen (NOx) emissions compliance, new off-road applications are being reviewed for both regulated and unregulated emissions to understand the technological challenges and requirements for improved emissions performance. The California Air Resources Board (CARB) has declared its intention to pursue more stringent NOX standards for the off-road market. As part of this effort, CARB initiated a program to provide a detailed characterization of emissions meeting the current Tier 4 off-road standards [1]. This work focused on understanding the off-road market, establishing a current technology emissions baseline, and performing initial modeling on potential low NOx solutions. This paper discusses a part of this effort, focuses on the emissions characterization from two non-road engine platforms, and compares the emissions species from different approaches designed to meet Tier 4 emissions regulations.
Technical Paper

Continuous Oil Consumption Measurement Using Laser Induced Breakdown Spectroscopy

2022-03-29
2022-01-0581
This paper describes a new method for measuring oil consumption using laser induced breakdown spectroscopy (LIBS). LIBS focuses a high energy laser pulse on a sample to form a transient plasma. As the plasma cools, each element produces atomic emission lines which can be used to identify and quantify the elements present in the original sample. In this work, a LIBS system was used on simulated engine exhaust with a focus on quantifying the inorganic components (termed ash) of the particulate emissions. Because some of the metallic elements in the ash almost exclusively result from lube oil consumption, their concentrations can also be correlated to an oil consumption rate. Initial testing was performed using SwRI’s Exhaust Composition Transient Operation Laboratory®(ECTO-Lab®) burner system so that oil consumption and ash mass could be precisely controlled.
Journal Article

Fuel Additive Transport into Engine Oil Determination using Laser Induced Fluorescence (LIF) and Liquid Chromatography (LC)

2021-09-21
2021-01-1149
The transport of fuel-borne additives into the engine oil is a critical factor for the efficacy with which the additive functionality can be imparted on the engine. This paper describes the combination of Laser Induced Fluorescence (LIF) and Liquid Chromatography (LC) to determine the real-time additive concentrations and transfer ratios in a spark-ignition, 2-liter GM LHU engine. The current research used a continuous sample circuit from the engine sump which passed through an integrating cavity flow cell to enhance the LIF signal. In the absence of a fluorescence signature of any of the native additive species, a suitable fluorescing dye was selected to simulate the additive. After establishing rigorous calibration curves, LC was employed as a referee method to do a direct comparison with the LIF determined dye concentrations.
Technical Paper

Combination of Mixed Metal Oxides with Cu-Zeolite for Enhanced Soot Oxidation on an SCRoF

2021-09-05
2021-24-0071
A push for more stringent emissions regulations has resulted in larger, increasingly complex aftertreatment solutions. In particular, oxides of nitrogen (NOX) and particulate matter (PM) have been controlled using two separate systems, selective catalytic reduction (SCR) and the catalyze diesel particulate filter (CDPF), or the functionality has been combined into a single device producing the SCR on filter (SCRoF). The SCRoF forgoes beneficial NO2 production present in the CDPF to avoid NH3 oxidation which occurs when using platinum group metals (PGM) for oxidation. In this study, mixed-metal oxides are shown to oxidize NO to NO2 without appreciable NH3 oxidation. This selectivity leads to enhanced performance when combined with a typical Cu-zeolite catalyst.
Technical Paper

Reduced Piston Oil Cooling for Improved Heavy-Duty Vehicle Fuel Economy

2021-04-06
2021-01-0387
Increased electrification of future heavy-duty engines and vehicles can enable many new technologies to improve efficiency. Electrified oil pumps are one such technology that provides the ability to reduce or turn off the piston oil cooling jets and simultaneously reduce the oil pump flow to account for the reduced flow rate required. This can reduce parasitic losses and improve overall engine efficiency. In order to study the potential impact of reduced oil cooling, a GT-Power engine model prediction of piston temperature was calibrated based on measured piston temperatures from a wireless telemetry system. A simulation was run in which the piston oil cooling was controlled to target a safe piston surface temperature and the resulting reduction in oil cooling was determined. With reduced oil cooling, engine BSFC improved by 0.2-0.8% compared to the baseline with full oil cooling, due to reduced heat transfer from the elevated piston temperatures.
Technical Paper

Impact of Selective Catalytic Reduction Process on Nonvolatile Particle Emissions

2021-04-06
2021-01-0624
Particulate matter (PM) and NOX are two major pollutants generated by diesel engines. Modern diesel aftertreatment systems include selective catalytic reduction (SCR) technology that helps reduce tailpipe NOX emissions when coupled with diesel exhaust fluid (DEF/urea) injection. However, this process also results in the formation of urea derived byproducts that can influence non-volatile particle number (PN) measurement conducted in accordance with the European Union (EU) Particle Measurement Program (PMP) protocol. In this program, an experimental investigation of the impact of DEF injection on tailpipe PN and its implications for PMP compliant measurements was conducted using a 2015 model year 6.7 L diesel engine equipped with a diesel oxidation catalyst, diesel particulate filter and SCR system. Open access to the engine controller was available to manually override select parameters.
Journal Article

Market Fuel Effects on Low Speed Pre-Ignition

2021-04-06
2021-01-0487
Low-Speed Pre-ignition (LSPI) is an undesirable abnormal combustion phenomenon observed in turbocharged, direct-injection spark-ignition engines and is characterized by early heat release, high cylinder pressures and severe, potentially damaging knock. LSPI has been studied for more than a decade and engine design, operating conditions and fuel and engine oil formulations have all been identified as contributing factors. A significant focus on engine oil has led to the establishment of the Sequence IX engine test and the second-generation of GM dexos® oil requirements, as well as a convergence of engine oil detergent causality. Conclusions about the effects of fuel on LSPI have been more varied, but as part of a recently completed research consortium, the LSPI tendency of market fuels with a range of properties, including composition, boiling point distribution, ethanol content and particulate matter index (PMI) were evaluated.
Technical Paper

Assessment of In-Use Solid Particle Number Measurement Systems against Laboratory Systems

2020-10-01
2020-01-5074
Euro VI regulations in Europe and its adaptors recently extended the regulation to include Particle Number (PN) for in-use conformity testing. However, the in-use PN Portable Emissions Measurement System (PEMS) is still evolving and has higher measurement uncertainty when compared against laboratory-grade PN systems. The PN systems for laboratory require a condensation particle counter (CPC). Thus, in this study, a CPC-based Horiba PN-PEMS was selected for performance evaluation against the laboratory-grade PN systems. This study was divided into four phases. The first two phases’ measurements were conducted from the Constant Volume Sampler (CVS) tunnel where the brake-specific particle number (BSPN) levels of 1010-12 and 1013 (#/bhp-h) were measured from the engines equipped with diesel particulate filter (DPF) and without DPF, respectively. In comparison against PN systems, PN-PEMS, on average, reported 14% lower BSPN from 82 various tests for the BSPN levels of 1010-11.
Technical Paper

The Diesel Aftertreatment Accelerated Aging Cycle Protocol: An Advanced Aftertreatment Case Study

2020-09-15
2020-01-2210
As agencies and governing bodies evaluate the feasibility of reduced emission standards, additional focus has been placed on technology durability. This is seen in proposed updates, which would require Original Equipment Manufacturers (OEMs) to certify engine families utilizing a full useful life (FUL) aftertreatment system. These kinds of proposed rulings would place a heavy burden on the manufacturer to generate FUL components utilizing traditional engine aging methods. Complications in this process will also increase the product development effort and will likely limit the amount of aftertreatment durability testing. There is also uncertainty regarding the aging approach and the representative impact compared to field aged units. Existing methodologies have evolved to account for several deterioration mechanisms that, when controlled, can be utilized to create a flexible aging protocol. As a result, these methodologies provide the necessary foundation for continued development.
Technical Paper

Evaluation of an On-Board, Real-Time Electronic Particulate Matter Sensor Using Heavy-Duty On-Highway Diesel Engine Platform

2020-04-14
2020-01-0385
California Air Resources Board (CARB) has instituted requirements for on-board diagnostics (OBD) that makes a spark-plug sized exhaust particulate matter (PM) sensor a critical component of the OBD system to detect diesel particulate filter (DPF) failure. Currently, non-real-time resistive-type sensors are used by engine OEMs onboard vehicles. Future OBD regulations are likely to lower PM OBD thresholds requiring higher sensitivity sensors with better data yield for OBD decision making. The focus of this work was on the experimental evaluation of a real-time PM sensor manufactured by EmiSense Technologies, LLC that may offer such benefits. A 2011 model year on-highway heavy-duty diesel engine fitted with a diesel oxidation catalyst (DOC) and a catalyzed DPF followed by urea-based selective catalytic reducer (SCR) and ammonia oxidation (AMOX) catalysts was used for this program.
Technical Paper

Development of a Burner-Based Test System to Produce Controllable Particulate Emissions for Evaluation of Gasoline Particulate Filters

2020-04-14
2020-01-0389
Gasoline Direct Injection (GDI) engines have been widely adopted by manufacturers in the light-duty market due to their fuel economy benefits. However, several studies have shown that GDI engines generate higher levels of particulate matter (PM) emissions relative to port fuel injected (PFI) engines and diesel engines equipped with optimally functioning diesel particulate filters (DPF). With stringent particle number (PN) regulations being implemented in both, the European Union and China, gasoline particulate filters (GPF) are expected to be widely utilized to control particulate emissions. Currently, evaluating GPF technologies on a vehicle can be challenging due to a limited number of commercially available vehicles that are calibrated for a GPF in the United States as well as the costs associated with vehicle procurement and evaluations utilizing a chassis dynamometer facility.
Journal Article

Detailed Analyses and Correlation of Fuel Effects on Stochastic Preignition

2020-04-14
2020-01-0612
Stochastic or Low-Speed Preignition (SPI or LSPI) is an undesirable abnormal combustion phenomenon encountered in spark-ignition engines. It is characterized by very early heat release and high cylinder pressure and can cause knock, noise and ultimately engine damage. Much of the focus on mitigating SPI has been directed towards the engine oil formulation, leading to the emergence of the Sequence IX test and second-generation GM dexos® oil requirements. Engine design, calibration and fuels also contribute to the prevalence of SPI. As part of a recently completed research consortium, a series of engine tests were completed to determine the impact of fuel composition on SPI frequency. The fuel blends had varying levels of paraffins, olefins, aromatics and ethanol.
Technical Paper

Correlation of Cylinder Head Gasket Sealing Analysis Results between Gasket Element and 3D Continuum Element

2020-03-10
2020-01-0049
A head gasket is a component that sits between the engine block/liner and cylinder head(s) in an internal combustion engine. Its purpose is to seal high pressure combustion gasses in the cylinders and to seal coolant and engine oil. It is the most critical sealing application in an engine. As a general practice, the load deflection(L/D) characteristic is generated by the gasket manufacturer for edge molded or composite gasket types. However, in the case of a solid-sheet metallic gasket, where the gasket is expected to undergo localized yielding to provide adequate conformance and sealing, usually supplier may not be able to provide the required L/D curve due to difficulties to experimentally separate the large loads and small displacements from the elastic loads and deflections of the experimental apparatus. In absence of L/D curve, the typical analysis approach is to model gasket as 3D continuum elements available in ansys by considering nonlinear material and frictional contacts.
Technical Paper

The Thermodynamic Design, Analysis and Test of Cummins’ Supertruck 2 50% Brake Thermal Efficiency Engine System

2019-04-02
2019-01-0247
Current production heavy duty diesel engines have a brake thermal efficiency (BTE) between 43-46% [1]. In partnership with the United States Department of Energy (DOE) as part of the Supertruck 2 program, Cummins has undertaken a research program to develop a new heavy-duty diesel engine designed to deliver greater than 50% BTE without the use of waste heat recovery. A system level optimization focused on: increased compression ratio, higher injection rate, carefully matched highly efficient turbocharging, variable lube oil pump, variable cooling components, and low restriction after treatment designed to deliver 50% BTE at a target development point. This work will also illustrate the system level planning and understanding of interactions required to allow that same 50% BTE heavy duty diesel engine to be integrated with a waste heat recovery (WHR) system to deliver system level efficiency of 55% BTE at a single point.
Technical Paper

Phenomenological Investigations of Mid-Channel Ash Deposit Formation and Characteristics in Diesel Particulate Filters

2019-04-02
2019-01-0973
Accumulation of lubricant and fuel derived ash in the diesel particulate filter (DPF) during vehicle operation results in a significant increase of pressure drop across the after-treatment system leading to loss of fuel economy and reduced soot storage capacity over time. Under certain operating conditions, the accumulated ash and/or soot cake layer can collapse resulting in ash deposits upstream from the typical ash plug section, henceforth termed mid-channel ash deposits. In addition, ash particles can bond (either physically or chemically) with neighboring particles resulting in formation of bridges across the channels that effectively block access to the remainder of the channel for the incoming exhaust gas stream. This phenomenon creates serious long-term durability issues for the DPF, which often must be replaced. Mid-channel deposits and ash bridges are extremely difficult to remove from the channels as they often sinter to the substrate.
Technical Paper

Polycyclic Aromatic Hydrocarbons in Diesel Engine Exhaust Both with and without Aftertreatment

2018-09-10
2018-01-1812
Since the conception of the internal combustion engine, smoky and ill-smelling exhaust was prevalent. Over the last century, significant improvements have been made in improving combustion and in treating the exhaust to reduce these effects. One group of compounds typically found in exhaust, polycyclic aromatic hydrocarbons (PAH), usually occurs at very low concentrations in diesel engine exhaust. Some of these compounds are considered carcinogenic, and most are considered hazardous air pollutants (HAP). Many methods have been developed for sampling, handling, and analyzing PAH. For this study, an improved method for dilute exhaust sampling was selected for sampling the PAH in diesel engine exhaust. This sampling method was used during transient engine operation both with and without aftertreatment to show the effect of aftertreatment.
X