Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Assessment of Condensation Particle Counter-Based Portable Solid Particle Number System for Applications with High Water Content in Exhaust

2024-04-22
2024-01-5048
The Particle Number–Portable Emission Measurement System (PN-PEMS) came into force with Euro VI Phase E regulations starting January 1, 2022. However, positive ignition (PI) engines must comply from January 1, 2024. The delay was due to the unavailability of the PN-PEMS system that could withstand high concentrations of water typically present in the tailpipe (TP) of CNG vehicles, which was detrimental to the PN-PEMS systems. Thus, this study was designed to evaluate the condensation particle counter (CPC)-based PN-PEMS measurement capabilities that was upgraded to endure high concentration of water. The PN-PEMS measurement of solid particle number (SPN23) greater than 23 nm was compared against the laboratory-grade PN systems in four phases. Each phase differs based upon the PN-PEMS and PN system location and measurements were made from three different CNG engines. In the first phase, systems measured the diluted exhaust through constant volume sampler (CVS) tunnel.
Technical Paper

Stress Generation in Large Pouch Cells Under Cycling and Abuse Conditions

2024-04-09
2024-01-2196
Pouch cells are increasingly popular form factors for the construction of energy storage systems in electric vehicles of all classes. Knowledge of the stress generated by these higher capacity pouch cells is critical to properly design battery modules and packs for both normal and abnormal operation. Existing literature predominantly offers data on smaller pouch cells with capacities of less than 10 Ah, leaving a gap in our understanding of the behavior of these larger cells. This experimental study aimed to bridge this knowledge gap by measuring loads and stresses in constrained 65 Ah pouch cells under both cycling and abuse conditions. To capture the desired responses, a load cell was located within a robust fixture to measure cell stress in real time after the application of a preload of approximately 30 kilograms or 294 N, equivalent to a pressure of 0.063 bar, with a fixed displacement.
Technical Paper

Application of Machine Learning to Engine Air System Failure Prediction

2024-04-09
2024-01-2007
With the capability of avoiding failure in advance, failure prediction model is important not only to end users, but also to the service engineers in vehicle industry. This paper proposes an approach based on anomaly detection algorithms and telematic data to predict the failure of the engine air system with Turbo charger. Firstly, the relationship between air system and all obtained features are analyzed by both physical mechanism and data-wise. Then, the features including altitude, air temperature, engine output power, and charger pressure are selected as the input of the model, with the sampling interval of 1 minute. Based on the selected features, the healthy state for each vehicle is defined by the model as benchmark. Finally, the ‘Medium surface’ is determined for specific vehicle, which is a hyperplane with the medium points of the healthy state located at, to detect the minor weakness symptom (sub-health state).
Technical Paper

Numerical Simulation of Class 8 Tractor Trailer Geometries and Comparison with Wind Tunnel Data

2024-04-09
2024-01-2533
This article analyzes the aerodynamic performance of Class 8 tractor-trailer geometries made available by the Environmental Protection Agency (EPA) using CFD simulation. Large Eddy Simulations (LES) were carried out with the CFD package, Simerics-MP+. A Sleeper tractor and a 53-foot box trailer configuration was considered. The configuration featured a detailed underbody, an open-grille under-hood engine compartment, mirrors, and the radiator and condenser. Multiple tractor-trailer variants were studied by adding aerodynamic surfaces to the baseline geometries. These include tank fairings and side extenders for the cabins, two types of trailer skirts, and a trailer tail. The effect of these devices towards reducing the overall vehicle drag was investigated. Mesh generation was carried out directly on the given geometry, without any surface modifications, using Simerics’ Binary-Tree unstructured mesher.
Technical Paper

System Level Simulation of H2 ICE after Treatment System

2024-04-09
2024-01-2625
Hydrogen Internal Combustion Engines (H2 ICE) are gaining recognition as a nearly emission-free alternative to traditional ICE engines. However, H2 ICE systems face challenges related to thermal management, N2O emissions, and reduced SCR efficiency in high humidity conditions (15% H2O). This study assesses how hydrogen in the exhaust affects after-treatment system components for H2 ICE engines, such as Selective Catalytic Reduction (SCR), Hydrogen Oxidation Catalyst (HOC), and Ammonia Slip Catalyst (ASC). Steady-state experiments with inlet H2 inlet concentrations of 0.25% to 1% and gas stream moisture levels of up to 15% H2O were conducted to characterize the catalyst response to H2 ICE exhaust. The data was used to calibrate and validate system component models, forming the basis for a system simulation.
Technical Paper

Eco-Routing Algorithm for Energy Savings in Connected Vehicles Using Commercial Navigation Information

2024-04-09
2024-01-2605
Vehicle-to-everything (V2X) communication, primarily designed for communication between vehicles and other entities for safety applications, is now being studied for its potential to improve vehicle energy efficiency. In previous work, a 20% reduction in energy consumption was demonstrated on a 2017 Prius Prime using V2X-enabled algorithms. A subsequent phase of the work is targeting an ambitious 30% reduction in energy consumption compared to a baseline. In this paper, we present the Eco-routing algorithm, which is key to achieving these savings. The algorithm identifies the most energy-efficient route between an Origin-Destination (O-D) pair by leveraging information accessible through commercially available Application Programming Interfaces (APIs). This algorithm is evaluated both virtually and experimentally through simulations and dynamometer tests, respectively, and is shown to reduce vehicle energy consumption by 10-15% compared to the baseline over real-world routes.
Technical Paper

3-D Multiphase Flow Simulation of Coolant Filling and Deaeration Processes in an Engine Coolant System

2024-01-16
2024-26-0310
The thermal performance of an engine coolant system is efficient when the engine head temperature is maintained within its optimum working range. For this, it is desired that air should not be entrapped in the coolant system which can lead to localized hot spots at critical locations. However, it is difficult to eliminate the trapped air pockets completely. So, the target is to minimize the entrapped air as much as possible during the coolant filling and deaeration processes, especially in major components such as the radiator, engine head, pump etc. The filling processes and duration are typically optimized in an engine test stand along with design changes for augmenting the coolant filling efficiency. However, it is expensive and time consuming to identify air entrapped locations in tests, decide on the filling strategy and make the design changes in the piping accordingly.
Technical Paper

High-Load Engine Simulation of Renewable Diesel Fuel Using A Reduced Mechanism

2023-10-31
2023-01-1620
According to the Annual Energy Outlook 2022 (AEO2022) report, almost 30% of the transport sector will still use internal combustion engines (ICE) until 2050. The transportation sector has been actively seeking different methods to reduce the CO2 emissions footprint of fossil fuels. The use of lower carbon-intensity fuels such as Renewable Diesel (RD) can enable a pathway to decarbonize the transport industry. This suggests the need for experimental or advanced numerical studies of RD to gain an understanding of its combustion and emissions performance. This work presents a numerical modeling approach to study the combustion and emissions of RD. The numerical model utilized the development of a reduced chemical kinetic mechanism for RD’s fuel chemistry. The final reduced mechanism for RD consists of 139 species and 721 reactions, which significantly shortened the computational time from using the detailed mechanism.
Technical Paper

An Approach for Incorporating Learning into System Design: System Level Assessment Methodology

2023-09-05
2023-01-1517
Shafaat and Kenley in 2015 identified the opportunity to improve System Engineering Standards by incorporating the design principle of learning. The System Level Assessment (SLA) Methodology is an approach that fulfills this need by efficiently capturing the learnings of a team of subject matter experts in the early stages of product system design. By gathering expertise, design considerations are identified that when used with market and business requirements improve the overall quality of the product system. To evaluate the effectiveness of this approach, the methodology has been successfully applied over 400 times within each realm of the New Product Introduction process, including most recently to a Technology Development program (in the earliest stages of the design process) to assess the viability of various electrification technologies under consideration by an automotive Tier 1 supplier.
Technical Paper

Reducing the Probability of Error in Testing and Simulation

2023-05-08
2023-01-1114
Simulation and testing are often done by different engineers in different departments of a company. This can lead to disconnects and unrealistic predictions, especially if the person doing simulations does not have an experimental background. On the other hand, experimental results can also include errors that result in misleading answers. It is important for the engineer doing either testing or simulation to have a good understanding for what results are plausible and what results might be suspect. This paper will provide examples where error crept into testing or simulation that could have been caught and corrected early if a good feel for “reasonable” results had been in place. The importance of understanding how a software package is analyzing the data will be explained, since settings buried deep within a menu structure can drive misleading results.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part I: Accelerated Ash Loading and DPF Performance Evaluation

2023-04-11
2023-01-0297
The project objective was to generate experimental data to evaluate the impact of metals doped B20 on DPF ash loading and performance compared to that of conventional petrodiesel. Accelerated ash loading was conducted on two DPFs – one exposed to regular diesel fuel and the other to B20 containing metal dopants equivalent to 4 ppm B100 total metals (currently total metals are limited to 10 ppm in ASTM D6751, the standard for B100). Periodic performance evaluations were conducted on the DPFs at 10 g/L ash loading intervals. After the evaluations at 30 g/L, the DPF was cleaned with a commercial DPF cleaning machine and another round of DPF evaluations were conducted. A comparison of the effect of ash loading with the two fuels and DPF cleaning is presented. The metals doped B20 fuel resulted in ash that was similar to that deposited when exposed to ULSD (lube oil ash) and exhibited similar ash cleaning removal efficiency.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part II: Chemical and Microscopic Characterization of Aged DPFs

2023-04-11
2023-01-0296
This project’s objective was to generate experimental data to evaluate the impact of metals doped B20 on diesel particle filter (DPF) ash loading and performance compared to that of conventional petrodiesel. The effect of metals doped B20 vs. conventional diesel on a DPF was quantified in a laboratory controlled accelerated ash loading study. The ash loading was conducted on two DPFs – one using ULSD fuel and the other on B20 containing metals dopants equivalent to 4 ppm B100 total metals. Engine oil consumption and B20 metals levels were accelerated by a factor of 5, with DPFs loaded to 30 g/L of ash. Details of the ash loading experiment and on-engine DPF performance evaluations are presented in the companion paper (Part I). The DPFs were cleaned, and ash samples were taken from the cleaned material. X-ray Fluorescence (XRF), X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD) were conducted on the ash samples.
Technical Paper

A Predictive Model for Spark Stretch and Mixture Ignition in SI Engines

2023-04-11
2023-01-0202
A physics-based spark ignition model was developed and integrated into a commercial CFD code. The model predicted the spark discharge process based on the electrical parameters of the secondary ignition circuit, tracked the spark motion as it was stretched by in-cylinder gas motion, and determined the resulting energy deposition to the gas. In concert with the existing kinetic solver in the CFD code, the resulting ignition and flame propagation processes were simulated. The model results have been validated against both imaging rig experiments of the spark in moving air and against engine experimental data. The model was able to replicate the key features of the spark and to capture the cyclic variability of high-dilution combustion when multiple engine cycles were simulated.
Technical Paper

Experimental and Modeling Study on the Thermal Aging Impact on the Performance of the Natural Gas Three-Way Catalyst

2023-04-11
2023-01-0375
The prediction accuracy of a three-way catalyst (TWC) model is highly associated with the ability of the model to incorporate the reaction kinetics of the emission process as a lambda function. In this study, we investigated the O2 and H2 concentration profiles of TWC reactions and used them as critical inputs for the development of a global TWC model. We presented the experimental data and global kinetic model showing the impact of thermal degradation on the performance of the TWC. The performance metrics investigated in this study included CH4, NOx, and CO conversions under lean, rich, and dithering light-off conditions to determine the kinetics of oxidation reactions and reduction/reforming/water-gas shift reactions as a function of thermal aging. The O2 and H2 concentrations were measured using mass spectrometry to track the change in the oxidation state of the catalyst and to determine the mechanism of the reactions under these light-off conditions.
Technical Paper

Comparison of Representative Wet and Dry Fire Suppressants to Retard Fire Propagation in Lithium-Ion Modules Initiated by Overcharge Abuse

2023-04-11
2023-01-0520
Overcharging lithium-ion batteries is a failure mode that is observed if the battery management system (BMS) or battery charger fails to stop the charging process as intended. Overcharging can easily lead to thermal runaway in a battery. In this paper, nickel manganese cobalt (NMC) battery modules from the Chevrolet Bolt, lithium manganese oxide (LMO) battery modules from the Chevrolet Volt, and lithium iron phosphate (LFP) battery modules from a hybrid transit bus were overcharged. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages, gaseous emissions, and feedback from volatile organic compound (VOC) sensors. Overcharging a battery can cause lithium plating and other exothermic reactions that will lead to thermal runaway.
Technical Paper

Development of High Compression-Ratio Stepped-Lip Piston using Machine Learning

2022-08-30
2022-01-1054
Interaction between a diesel spray and piston plays a significant role in overall combustion and emissions performance in compression-ignition engines. It is essential to design the lip feature respective to spray targeting and the following charge motion for combustion systems that rely on spray-piston interaction strongly, such as a stepped-lip piston. This study used a numerical campaign using computational fluid dynamics (CFD) simulation to optimize a stepped-lip combustion system at a 22:1 compression ratio (CR) for both performance and emissions. This is a substantial step up in CR from the stock value of 17:1 for the same engine platform. A machine learning model was used to identify the best combination of features from a design space involving hundreds of potential piston designs and injector nozzle configurations. This study provides a discussion on the general combustion characteristics of the stepped-lip combustion system and the sensitivity of the design parameters.
Technical Paper

Demonstration of Energy Consumption Reduction in Class 8 Trucks Using Eco-Driving Algorithm Based on On-Road Testing

2022-03-29
2022-01-0139
Vehicle to Everything (V2X) communication has enabled on-board access to information from other vehicles and infrastructure. This information, traditionally used for safety applications, is increasingly being used for improving vehicle fuel economy [1-5]. This work aims to demonstrate energy consumption reductions in heavy/medium duty vehicles using an eco-driving algorithm. The algorithm is enabled by V2X communication and uses data contained in Basic Safety Messages (BSMs) and Signal Phase and Timing (SPaT) to generate an energy-efficient velocity trajectory for the vehicle to follow. An urban corridor was modeled in a microscopic traffic simulation package and was calibrated to match real-world traffic conditions. A nominal reduction of 7% in energy consumption and 6% in trip time was observed in simulations of eco-driving trucks.
Technical Paper

Optimization of Surfactant and Catalyst Modified Urea-Water Solution Formulation for Deposit Reduction in SCR Aftertreatment Systems

2022-03-29
2022-01-0541
Selective Catalytic Reduction is the primary method of NOX emission abatement in lean-burn internal combustion. This process requires the decomposition of a 32.5 wt. % urea-water solution (UWS) to provide ammonia as a reducing agent for NOX, but at temperatures < 250 °C the injection of UWS is limited due to the formation of harmful deposits within an aftertreatment system and decreased ammonia production. Previous work has sufficiently demonstrated that the addition of surfactant and a urea/isocyanic acid (HNCO) decomposition catalyst to UWS can significantly decrease deposit formation within an aftertreatment system. The objective of this work was to further optimize the modified UWS formulation by investigating different types and concentrations of surfactants and titanium-based urea/HNCO catalyst. Because there is a correlation between surface tension and water evaporation, it was theorized that minimizing the surface tension of UWS would result in decreased deposit formation.
Technical Paper

Reduced Power Cylinder Friction with Advanced Coatings and Optimized Lubricants

2022-03-29
2022-01-0523
The engine power cylinder is comprised of the piston, piston rings, and cylinder. It accounts for a significant amount of total engine friction within reciprocating, internal combustion engines. Reducing power cylinder friction is key to the development of efficient internal combustion engines. However, isolating individual power cylinder tribocouples for detailed analysis can be challenging. In this work, a new reciprocating liner test rig is developed and introduced. The rig design is novel, using a stationary piston and a reciprocating cylinder liner. Friction is calculated from the force measured in the connecting rod which supports the piston. The rig allows for independent control of peak cylinder pressure, speed, and lubricant temperature. Using the newly developed test rig, several technologies for friction reduction are evaluated and compared.
Technical Paper

Unregulated Emissions Characterization and Comparison for Two Off-Road Applications: A DPF and Non-DPF Engine

2022-03-29
2022-01-0587
As governmental agencies focus on low levels of the oxides of nitrogen (NOx) emissions compliance, new off-road applications are being reviewed for both regulated and unregulated emissions to understand the technological challenges and requirements for improved emissions performance. The California Air Resources Board (CARB) has declared its intention to pursue more stringent NOX standards for the off-road market. As part of this effort, CARB initiated a program to provide a detailed characterization of emissions meeting the current Tier 4 off-road standards [1]. This work focused on understanding the off-road market, establishing a current technology emissions baseline, and performing initial modeling on potential low NOx solutions. This paper discusses a part of this effort, focuses on the emissions characterization from two non-road engine platforms, and compares the emissions species from different approaches designed to meet Tier 4 emissions regulations.
X