Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Semi-Volatile Organic Compounds from a Combined Dual Port Injection/Direct-Injection Technology Light-Duty Gasoline Vehicle

2019-09-09
2019-24-0051
Gasoline direct injection (GDI) has changed the exhaust composition in comparison with the older port fuel injection (PFI) systems. More recently, light-duty vehicle engine manufactures have combined these two technologies to take advantage of the knock benefits and fuel economy of GDI with the low particulate emission of PFI. These dual injection strategy engines have made a change in the combustion emission composition produced by these engines. Understanding the impact of these changes is essential for automotive companies and aftertreatment developers. A novel sampling system was designed to sample the exhaust generated by a dual injection strategy gasoline vehicle using the United States Federal Test Procedure (FTP). This sampling system was capable of measuring the regulated emissions as well as collecting the entire exhaust from the vehicle for measuring unregulated emissions.
Technical Paper

Multi-Domain Optimization for Fuel Economy Improvement of HD Trucks

2019-04-02
2019-01-0312
Fuel usage negatively impacts the environment and is a significant portion of operational costs of moving freight globally. Reducing fuel consumption is key to lessening environmental impacts and maximizing freight efficiency, thereby increasing the profit margin of logistic operators. In this paper, fuel economy improvements of a cab-over style 49T heavy duty Foton truck powered by a Cummins 12-liter engine are studied and systematically applied for the China market. Most fuel efficiency improvements are found within the vehicle design when compared to opportunities available at the engine level. Vehicle design (improved aerodynamics), component selection/matching (low rolling resistance tires), and powertrain electronic features integration (shift schedule/electronic trim) offer the largest opportunities for lowering fuel consumption.
Technical Paper

Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles

2019-04-02
2019-01-0116
A new generation of vehicle dynamics and powertrain control technologies are being developed to leverage information streams enabled via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) connectivity [1, 2, 3, 4, 5]. While algorithms that use these connected information streams to enable improvements in energy efficiency are being studied in detail, methodologies to quantify and analyze these improvements on a vehicle have not yet been explored fully. A procedure to test and accurately measure energy-consumption benefits of a connected and automated vehicle (CAV) is presented. The first part of the test methodology enables testing in a controlled environment. A traffic simulator is built to model traffic flow in Fort Worth, Texas with sufficient accuracy. The benefits of a traffic simulator are two-fold: (1) generation of repeatable traffic scenarios and (2) evaluation of the robustness of control algorithms by introducing disturbances.
Technical Paper

Particle Emissions from Gasoline Direct Injection Engines during Engine Start-Up (Cranking)

2019-04-02
2019-01-1182
Engine start-up (cranking) can be an important source of particle emissions from vehicles. With the penetration of GDI vehicles in the global vehicle fleet, it is important to analyze and understand the contribution of start-up particle emissions from GDI vehicles, and the potential effects of fuel properties on that process. In this work, chassis dynamometer based investigation on the effect of several gasoline fuels (commercial and blended) on both, naturally aspirated and turbocharged GDI vehicles were conducted to understand the importance of engine start up, in particular, cranking. 10 commercially available gasoline fuels were tested on a naturally aspirated 2010 model year GDI vehicle, 3 among these commercially available fuels were tested on another 2009 model year turbocharged GDI vehicle, and 8 blended gasoline fuels were tested on 12 other GDI vehicles (7 turbocharged and 5 naturally aspirated) ranging in model years 2011-2015.
Technical Paper

Effects of Dual Port Injection and Direct-Injection Technology on Combustion Emissions from Light-Duty Gasoline Vehicles

2019-04-02
2019-01-0999
Dual injection fuel systems combine the knock and fuel economy benefits of gasoline direct injection (GDI) technology with the lower particulate emissions of port fuel injection (PFI) systems. For many years, this technology was limited to smaller-volume, high-end, vehicle models, but these technologies are now becoming main stream. The combination of two fuel injection systems has an impact on the combustion emission composition as well as the consistency of control strategy and emissions. Understanding the impact of these changes is essential for fuel and fuel additive companies, automotive companies, and aftertreatment developers. This paper describes the effects of dual injection technology on both regulated and non-regulated combustion emissions from a 2018 Toyota Camry during several cold-start, 4-bag United States Federal Test Procedure (FTP) cycle.
Technical Paper

EGR Cooler Field Return Rate Evaluation Based on Product and Application Variation

2019-04-02
2019-01-0915
The automotive industry drives some of the most stringent product requirements to ensure long product life and customer satisfaction. To demonstrate compliance with these requirements new and more accurate evaluation methods are needed. Thermal fatigue life in EGR coolers for heavy duty diesel applications have historically been a critical focus for engine OEMs. Being able to accurately evaluate product return rates due to thermal fatigue failures gives the OEM confidence that all end users will be satisfied, and allows program management to properly make fiscal decisions. Additionally, weight and cost optimization can be conducted with greater confidence. This is accomplished by accounting for product variation and application variation in thermal fatigue life evaluations. Including these variations requires a simplified numerical method to calculate product life, as tens of thousands of samples will be run through the analysis to represent real life random variation.
Journal Article

Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis

2019-04-02
2019-01-0263
This study is a continuation of previous work assessing the robustness of a Cummins XPI common rail injection system operating with gasoline-like fuel. All the hardware from the original study was retained except for the high pressure pump head and check valves which were replaced due to cavitation damage. An additional 400 hour NATO cycle was run on the refurbished fuel system to achieve a total exposure time of 800 hours and detect any other significant failure modes. As in the initial investigation, fuel system parameters including pressures, temperatures and flow rates were logged on a test bench to monitor performance over time. Fuel and lubricant samples were taken every 50 hours to assess fuel consistency, metallic wear, and interaction between fuel and oil. High fidelity driving torque and flow measurements were made to compare overall system performance when operating with both diesel and light distillate fuel.
Technical Paper

Review of the Computer Science and Engineering Solutions for Model Sharing and Model Co-Simulation

2019-03-19
2019-01-1352
The process of developing, parameterizing, validating, and maintaining models occurs within a wide variety of tools, and requires significant time and resources. To maximize model utilization, models are often shared between various toolsets and experts. One common example is sharing aircraft engine models with airframers. The functionality of a given model may be utilized and shared with a secondary model, or multiple models may run collaboratively through co-simulation. There are many technical challenges associated with model sharing and co-simulation. For example, data communication between models and tools must be accurate and reliable, and the model usage must be well-documented and perspicuous for a user. This requires clear communication and understanding between computer scientists and engineers. Most often, models are developed by engineers, whereas the tools used to share the models are developed by computer scientists.
Technical Paper

Investigation of an Advanced Combustion System for Stoichiometric Diesel to Reduce Soot Emissions

2019-01-15
2019-01-0023
Diesel engines are facing increased competition from gasoline engines in the light-duty and small non-road segments, primarily due to the high relative cost of emissions control systems for lean-burn diesel engines. Advancements in gasoline engine technology have decreased the operating cost advantage of diesels and the relatively high initial-cost disadvantage is now too large to sustain a strong business position. SwRI has focused several years of research efforts toward enabling diesel engine combustion systems to operate at stoichiometric conditions, which allows the application of a low-cost three-way catalyst emission control system which has been well developed for gasoline spark-ignited engines. One of the main barriers of this combustion concept is the result of high smoke emissions from poor fuel/air mixing.
Journal Article

Model-Based Approaches in Developing an Advanced Aftertreatment System: An Overview

2019-01-15
2019-01-0026
Cummins has recently launched next-generation aftertreatment technology, the Single ModuleTM aftertreatment system, for medium-duty and heavy-duty engines used in on-highway and off-highway applications. Besides meeting EPA 2010+ and Euro VI regulations, the Single ModuleTM aftertreatment system offers 60% volume and 40% weight reductions compared to current aftertreatment systems. In this work, we present model-based approaches that were systematically adopted in the design and development of the Cummins Single ModuleTM aftertreatment system. Particularly, a variety of analytical and experimental component-level and system-level validation tools have been used to optimize DOC, DPF, SCR/ASC, as well as the DEF decomposition device.
Technical Paper

Evaluation of an Open-grill Vehicle Aerodynamics Simulation Method Considering Dirty CAD Geometries

2018-04-03
2018-01-0733
In open-grille vehicle aerodynamics simulation using computational fluid dynamics, in addition to basic flow characteristics, such as turbulent flow with a Reynolds number of several million on the bluff body, it is important to accurately estimate the cooling air flow introduced from the front opening. It is therefore necessary to reproduce the detailed geometry of the entire vehicle including the engine bay as precisely as possible. However, there is a problem of generating a good-quality calculation grid with a small workload. It usually takes several days to a week for the pretreatment process to make the geometry data ‘clean’ or ‘watertight’. The authors proposed a computational method for complex geometries with a hierarchical Cartesian grid and a topology-independent immersed boundary method with dummy cells that discretize the geometry on a cell-by-cell basis and can set an imaginary point arbitrarily.
Technical Paper

Durability Test Suite Optimization Based on Physics of Failure

2018-04-03
2018-01-0792
Dynamometer (dyno) durability testing plays a significant role in reliability and durability assessment of commercial engines. Frequently, durability test procedures are based on warranty history and corresponding component failure modes. Evolution of engine designs, operating conditions, electronic control features, and diagnostic limits have created challenges to historical-based testing approaches. A physics-based methodology, known as Load Matrix, is described to counteract these challenges. The technique, developed by AVL, is based on damage factor models for subsystem and component failure modes (e.g. fatigue, wear, degradation, deposits) and knowledge of customer duty cycles. By correlating dyno test to field conditions in quantifiable terms, such as customer equivalent miles, more effective and efficient durability test suites and test procedures can be utilized. To this end, application of Load Matrix to a heavy-duty diesel engine is presented.
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

2018-04-03
2018-01-0880
Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Technical Paper

Water Recovery from Gasoline Engine Exhaust for Water Injection

2018-04-03
2018-01-0369
Water injection (WI) can improve gasoline engine performance and efficiency, and on-board water recovery technology could eliminate the need for customers to refill an on-board water reservoir. In this regard, the technical feasibility of exhaust water recovery (EWR) is described in this paper. Water injection testing was conducted at a full load condition (5000 rpm/18.1 bar BMEP) and a high load condition (3000 rpm/14.0 bar BMEP) on a turbocharged gasoline direction injection (GTDI) engine. Water recovery testing was conducted both after the exhaust gas recirculation (EGR) cooler and after the charge air cooler (CAC) at a high load (3000 rpm/14.0 bar BMEP), as well as a part load (2080 rpm/6.8 bar BMEP) condition, at temperatures ca. 10-15 °C below the dew point of the flow stream. Three types of water separation designs were tested: a passive cyclone separator (CS), a passive membrane separator (MEM), and an active separator (AS).
Technical Paper

Sustained Low Temperature NOx Reduction

2018-04-03
2018-01-0341
Sustained NOx reduction at low temperatures, especially in the 150-200 °C range, shares some similarities with the more commonly discussed cold-start challenge, however, poses a number of additional and distinct technical problems. In this project, we set a bold target of achieving and maintaining 90% NOx conversion at the SCR catalyst inlet temperature of 150 °C. This project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015 and completed in 2017.
Technical Paper

Effect of Micro-Hole Nozzle on Diesel Spray and Combustion

2018-04-03
2018-01-0301
The influence of nozzle geometry on spray and combustion of diesel continues to be a topic of great research interest. One area of promise, injector nozzles with micro-holes (i.e. down to 30 μm), still need further investigation. Reduction of nozzle orifice diameter and increased fuel injection pressure typically promotes air entrainment near-nozzle during start of injection. This leads to better premixing and consequently leaner combustion, hence lowering the formation of soot. Advances in numerical simulation have made it possible to study the effect of different nozzle diameters on the spray and combustion in great detail. In this study, a baseline model was developed for investigating the spray and combustion of diesel fuel at the Spray A condition (nozzle diameter of 90 μm) from the Engine Combustion Network (ECN) community.
Technical Paper

Selective Interrupt and Control: An Open ECU Alternative

2018-04-03
2018-01-0127
To enable the evaluation of off-calibration powertrain operation, a selective interrupt and control (SIC) test capability was developed as part of an EPA evaluation of a 1.6 L EcoBoost® engine. A control and data acquisition device sits between the stock powertrain controller and the engine; the device selectively passes through or modifies control signals while also simulating feedback signals. This paper describes the development process of SIC that enabled a test engineer to command off-calibration setpoints for intake and exhaust cam phasing as well as ignition timing without the need for an open ECU duplicating the stock calibration. Results are presented demonstrating the impact of ignition timing and cam phasing on engine efficiency. When coupled with combustion analysis and crank-domain data acquisition, this test configuration provides a complete picture of powertrain performance.
Technical Paper

Reactor System with Diesel Injection Capability for DOC Evaluations

2018-04-03
2018-01-0647
Plug flow reactors, simulating engine exhaust gas, are widely used in emissions control research to gain insight into the reaction mechanisms and engineering aspects that controls activity, selectivity, and durability of catalyst components. The choice of relevant hydrocarbon (HC) species is one of the most challenging factor in such laboratory studies, given the variety of compositions that can be encountered in different application scenarios. Furthermore, this challenge is amplified by the experimental difficulties related to introducing heavier and multi-component HCs and analyzing the reaction products.
Technical Paper

The Effect of In-Cylinder Flow and Mixture Distributions on Combustion Characteristics in a HCCI Engine

2017-11-05
2017-32-0061
It has been widely known that thermal and fuel stratifications of in-cylinder mixture are effective to reduce in-cylinder pressure rise rate during high load HCCI operations. In order to optimize a combustion chamber design and combustion control strategy for HCCI engines with wide operational range, it is important to know quantitatively the influence of the temperature and fuel concentration distributions on ignition and heat release characteristics. At the same time, it is important to know the influence of in-cylinder flow and turbulence on the temperature and fuel concentration distributions. In this study, a numerical simulation of HCCI combustion were conducted to investigate the effects of the in-cylinder flow and turbulence, and the distributions of temperature on ignition and combustion characteristics in HCCI combustion.
Technical Paper

Future Challenges for Engine Manufacturers in View of Future Emissions Legislation

2017-05-10
2017-01-1923
Countries around the world are expected to continue to adopt more stringent emissions standards for heavy-duty markets for both oxides of nitrogen (NOx) and greenhouse gases (GHG). While there is uncertainty about the timing and extent of these regulations, it is clear that significant reductions will be required to address urban air pollution and climate change concerns. The rate and pace of technology evolution and how it will affect the energy pathways for commercial transportation and industrial use are dependent on multiple variables such as national energy and environmental policies and public-private partnerships. Although it adds complexity, the engine system has great potential to evolve as it continues to be highly integrated into the super system for which it is producing power. This paper examines the potential opportunities and challenges for engine manufacturers to continue to be the supplier of power to vehicles and equipment of the future.
X