Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Proper Orthogonal Decomposition Analysis of Flow Structures Generated around Engine Cooling Fan

2014-04-01
2014-01-0667
A cooling fan is one of the primary components affecting the cooling performance of an engine cooling system. In recent years, with the increase in electric vehicles (EVs) and hybrid vehicles (HVs), the cooling performance and noise level of the cooling fan have become very important. Thus, the development of a low-noise fan with the same cooling performance is urgently required. To address this issue, it is critical to find the relation between the performance of the fan and the flow structures generated around it, which is discussed in the present paper. Specifically, a computational method is employed that uses unsteady Reynolds-averaged Navier-Stokes (URANS) coupling with a sliding mesh (SLM). Measurements of the P-Q (Pressure gain-Flow rate) characteristics are performed to validate the predictive accuracy of the simulation.
Technical Paper

Study of Cooling Drag Reduction Method by Controlling Cooling Flow

2014-04-01
2014-01-0679
As the demand for improved fuel economy increases and new CO2 regulations have been issued, aerodynamic drag reduction has become more critical. One of the important factors to consider is cooling drag. One way to reduce cooling drag is to decrease the air flow volume through the front grille, but this has an undesirable impact on cooling performance as well as component heat load in the under-hood area. For this reason, cooling drag reduction methods while keeping reliability, cooling performance and component heat management were investigated in this study. At first, air flow volume reduction at high speed was studied, where aerodynamic drag has the greatest influence. For vehicles sold in the USA, cooling specification tends to be determined based on low speed, while towing or driving up mountain roads, and therefore, there may be extra cooling capacity under high speed conditions.
Technical Paper

Development of High Performance Radiators by Fin Optimization

2014-04-01
2014-01-0635
Requirements for fuel economy improvement and reduction in the vehicles engine compartment have increased significantly in the pass years. Performances in radiators have driven changes in terms of compactness and weight reductions. By focusing on the air flow we have optimized the radiator fin and developed a high performance radiator. A similar performance was achieved using an 11mm core depth which has 30% weight reduction compared to a 16mm core depth. The purpose of this paper is to present a technical outline about fin optimization.
Technical Paper

Reduction of the BPF Noise Radiated from an Engine Cooling Fan

2014-04-01
2014-01-0631
This study investigates the reduction of the Blade Passing Frequency (BPF) noise radiated from an automotive engine cooling fans, especially in case of the fan with an eccentric shroud. In recent years, with the increase of HV and EV, noise reduction demand been increased. Therefore it is necessary to reduce engine cooling fan noise. In addition, as a vehicle trend, engine rooms have diminished due to expansion of passenger rooms. As a result, since the space for engine cooling fans need to be small. In this situation, shroud shapes have become complicated and non-axial symmetric (eccentric). Generally, the noise of fan with an eccentric shroud becomes worse especially for BPF noise. So it is necessary to reduce the fan BPF noise. The purposes of this paper is to find sound sources of the BPF noise by measuring sound intensity and to analyze the flow structure around the blade by Computational Fluid Dynamics (CFD).
Technical Paper

The Large Scale Finite Element Analysis of a Charge Air Cooler Using a Homogenization Method

2013-04-08
2013-01-1212
Heat exchangers used as charge air coolers are repeatedly subjected to thermal strain, which may cause fracture. To predict the durability of heat exchangers, stress estimations using Finite Element Analysis (FEA) are effective. However, producing a detailed finite element model would require an enormous number of elements and excessive calculation costs. To resolve this problem, we focused on periodic tube-fin structures, considering actual and designed fin shapes, and applied a homogenization method to the fins. We then determined their homogenization elastic stiffness and verified it by conducting compression experiments and analyses using partial models consisting of laminated tube-fin structures. If fins are homogenized, it is important that homogenization be based on the actual fin shape. We then produced a finite element model of a charge air cooler assembly by using the homogenization element, and conducted analyses which simulated a thermal fatigue test.
Technical Paper

Development of Intercooler Plastic Tank Material Instead of Aluminum Die-Cast

2013-04-08
2013-01-1175
In recent years, fuel consumption regulations are becoming more severe in every country in the world. Engine size reduction plus turbo is one of the solutions. Our turbo system has an intercooler which cools high temperature gas compressed by a turbocharger. The structure of the intercooler is a tank mounted on both sides of a heat exchanger. The tank connects to the heat exchanger and turbo system allowing EGR (Exhaust Gas Recirculation) gas through the heat exchanger in response to the tightening of exhaust gas regulations. Use of the LPL (Low Pressure Loop) system which refluxes EGR gas is expected to increase from now. Since EGR gas is characterized by high temperature, high pressure, and acidic condensed water, high fatigue strength at high temperature and acid resistivity is required. Therefore aluminum (Al) is generally applied for “intercooler tank” (hereafter referred to as “tank”).
Technical Paper

Evaporator with Integrated Ejector for Automotive Cabin Cooling

2012-04-16
2012-01-1048
The ejector is a fluid pump that recovers expansion energy, which is wasted in the conventional refrigeration cycle decompression process, and converts the recovered expansion energy into pressure energy. In the ejector cycle, the ejector helps to reduce power consumption of the compressor by using the above mentioned pressure-rising effect. Consequently, the ejector system can improve energy efficiency of the refrigeration cycle. In previous work, the ejector cycle was used to reduce power consumption in refrigeration cycles for a cool-box (a beverage cooling inside the vehicle) and refrigerated truck box. Both of these applications used the ejector to achieve refrigerant pressure/temperature below the vehicle cabin temperature. Now, the ejector has been integrated into the vehicle cabin evaporator to reduce power consumption of the refrigeration cycle for vehicle cabin cooling.
X