Refine Your Search

Topic

Author

Search Results

Technical Paper

Ultra-High Fuel Pressure in GDI to Suppress Particulate Formation during Warming-Up and Load Transients

2023-04-11
2023-01-0239
This study investigates if particulates from a GDI engine can be significantly suppressed by use of ultra-high injection pressures under 2 different engine conditions known to be associated with high particulate numbers (PN): warm-up and transients. Experiments were carried out in a single-cylinder GDI engine equipped with an endoscope connected to a high-speed camera to enable combustion visualization. To mimic the warming-up, the coolant temperature was varied between 20 °C and 90 °C. A Diesel injector with modified nozzle was used and the injection pressures were varied between 400 and 1500 bar. The results revealed that increasing the fuel injection pressure decreased engine out HC and PN under warming-up conditions. However, the coolant water temperature was the most dominant factor affecting the emissions. For coolant temperature of 20 °C, the use of 1500 bar fuel injection pressure in comparison to lower fuel pressures resulted in significantly lower PN.
Technical Paper

Modeling and Simulation Analysis of Electric Vehicle Thermal Management System Based on Distributed Parameter Method

2022-03-29
2022-01-0211
The distributed parameter method is used to establish the dynamic simulation model of the electric vehicle thermal management system and various parts, and the finite difference method is used to solve the model. A thermal management system model with same structure is established by AMESIM, and the accuracy of the dynamic simulation model is verified by comparing the deviation of the calculation result between this dynamic simulation model and AMESIM. Based on the established model, the influence of expansion valve opening on the temperature of battery pack and the influence on the heating comfort of the cabin were studied. A control strategy for the rapid cooling of the battery pack was proposed. The results show that the model established by the distributed parameter method provides quite well agreement with commercial equivalent software and can well reflect the flow state of the refrigerant in different zones of the same component.
Technical Paper

Research in OFDM-Based High-Speed In-Vehicle Network Connectivity for Cameras and Displays

2021-04-06
2021-01-0151
Growing trends of connected and autonomous vehicles have pushed for increased resolutions of cameras to 8Mpix and displays to 4K/8K, leading to requirements for high-speed interfaces that support 10Gbps and beyond. Unlike data center or enterprise networks which normally operates under controlled indoor environments, in-vehicle networks are required to operate in harsh temperature and interference environments. Due to cost restrictions, the use of single pair wire is prevalent for in-vehicle networks. In general, as data transmission speed increase, signal spectrum spreads across greater frequency range. Since insertion loss of a channel increases in proportion to signal frequency, it becomes more difficult to secure SNR (signal-to-noise ratio) margins as bit rate increases. This makes it increasingly difficult for a device (e.g. ECUs, sensors, and displays) with high-speed communication interface to meet EMC (electromagnetic compatibility) criteria imposed by automotive OEMs.
Technical Paper

Dynamically Adjustable LiDAR with SPAD Array and Scanner

2021-04-06
2021-01-0091
An important function of an Automated Driving (AD) system is to detect objects including vehicles and pedestrians on the road. Typical devices for detecting those objects include cameras, millimeter-wave RADAR, and light detection and ranging (LiDAR). LiDAR uses the flight time of a short-wavelength electromagnetic wave. Because of that LiDAR is expected to find even small objects such as tire fragments on a road in high resolution. The detection performance required for LiDAR depends on the operational design domain (ODD). For example, while a vehicle is travelling at high speeds, LiDAR needs to detect apparently small objects at long distances, and while it is travelling at low speeds, LiDAR has to detect objects over a wide angular range. Conventional LiDAR is developed to satisfy all requirements, providing performance including detection distance, resolution, and angle of view tends to expose issues such as cost and size when it is mounted onboard.
Journal Article

Zero-Day Attack Defenses and Test Framework for Connected Mobility ECUs

2021-04-06
2021-01-0141
Recent developments in the commercialization of mobility services have brought unprecedented connectivity to the automotive sector. While the adoption of connected features provides significant benefits to vehicle owners, adversaries may leverage zero-day attacks to target the expanded attack surface and make unauthorized access to sensitive data. Protecting new generations of automotive controllers against malicious intrusions requires solutions that do not depend on conventional countermeasures, which often fall short when pitted against sophisticated exploitation attempts. In this paper, we describe some of the latent risks in current automotive systems along with a well-engineered multi-layer defense strategy. Further, we introduce a novel and comprehensive attack and performance test framework which considers state-of-the-art memory corruption attacks, countermeasures and evaluation methods.
Technical Paper

Analysis of Tribofilm Formed by Electric Brush Sliding for Long Life Starter Motor

2019-04-02
2019-01-0181
Global exhaust emission regulations are becoming stricter, and vehicles equipped with the idle stop system (ISS) are increasing. Recently, starters for vehicles equipped with ISS are required to improve operation feel when speedily restarted. To satisfy this demand, starters must rotate at higher rotational speeds, and heavier wear in their brushes may cause problems. Tribofilm formed on commutators surface by the brush sliding is an important factor in the brush commutator wear, because tribofilm is said to have a property to increase lubricity and decrease mechanical wear in brushes and commutator, as well as to improve commutation and decrease arc wear. Therefore, for reducing brush commutator wear, it is considered effective to promote film formation by improving materials. However, few researches have been conducted to evaluate the relationship between brush materials and tribofilm formation.
Technical Paper

High Resolution LiDAR Based on Single Chip SPAD Array

2019-04-02
2019-01-0119
It is important that Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (AD) detect on-road objects, road vehicles and pedestrians. The typical detection devices mounted on ADAS and AD include a camera, a millimeter-wave radar and a Light Detection And Ranging (LiDAR). Since LiDAR can obtain accurate distance and fine spatial resolution due to its short wavelength, it is expected that small objects such as a tire can be detected. However, the conventional LiDAR is equipped with multiple light transmitters and light receivers such as avalanche photo diodes. This causes LiDAR system to be expensive and large in size. Aiming to reduce the cost and size of LiDAR, we employed Single-Photon Avalanche Diode (SPAD) which can be fabricated by CMOS process and easily arrayed. We also developed “Single Chip SPAD Array“ in which the two-dimensional array of SPAD and a signal processing block of range calculation were integrated into a single chip.
Technical Paper

Ignition and Soot Formation/Oxidation Characteristics of Compositionally Unique International Diesel Blends

2019-04-02
2019-01-0548
With the global adoption of diesel common rail systems and the wide variation in composition of local commercial fuels, modern fuel injection systems must be robust against diverse fuel properties. To bridge the knowledge gap on the effects of compositional variation for real commercial fuels on spray combustion characteristics, the present work quantifies ignition and soot formation/oxidation in three unique, international diesel blends. Schlieren imaging, excited-state hydroxyl radical (OH*) chemiluminescence imaging and diffused back-illumination extinction imaging were employed to quantify vapor penetration, ignition, and soot formation and oxidation for high-pressure sprays in a constant-volume, pre-burn chamber. The three fuels were procured from Finland, Japan and Brazil and have cetane numbers of 64.1, 56.1 and 45.4, respectively.
Technical Paper

Thin Ceiling Circulator to Enhance Thermal Comfort and Cabin Space

2019-04-02
2019-01-0913
In hot climate regions, there is demand for improved thermal comfort for rear occupants in vehicles not equipped with a rear air conditioner. One solution to this challenge is a circulator mounted on the ceiling. The circulator is a product designed to enhance thermal comfort for occupants by circulating the air in the cabin. The conventional circulator design, which employs a cross flow fan with a large cross section, juts into the cabin space, because it is difficult to package. Consequently, the challenge for the circulator is to provide thermal comfort for rear occupants while taking up the minimum cabin space under the ceiling. To solve this challenge, that is, to enable a substantially thinner structure, while retaining the same level of air flow delivered as before for the same thermal comfort as the conventional circulator, we divided the structure into an air outlet and an air blower.
Technical Paper

Validation Method of Interface Specification for Cooperative Control of Individual Systems

2019-04-02
2019-01-1039
As automotive electronic systems aiming for a safe and secure automobile society continue to develop, the control specifications of the ECU are becoming increasingly complex. When attempting to validate control specifications that cooperatively control different control specifications, control specification developers must consider various validation viewpoints. They narrow down the validation viewpoints based on rules from past experience, describe timing charts, and validate the specifications. However, due to complicated specifications, empirical rules do not pass, and specification mismatches are often found after actual systems completion. On the other hand, a block diagram simulator is a tool to verify control specifications. Since these tools are aimed at modeling and verifying the system design, it is efficient to describe how to implement the system. However, first it is necessary to verify the consistency between the model and the specifications.
Technical Paper

Evolution of Gasoline Direct Injection System for Reduction of Real Mode Emission

2019-04-02
2019-01-0265
Continuous improvement of gasoline engine emissions performance is required to further protect the global environment and also the impact of emissions on a local level. During real world driving, transient engine operation and variation in fuel injection, airflow, and wall temperature are key factors to be controlled. Due to the limited opportunity for optimization of engine control, generation of a well-mixed fuel spray is necessary to create a suitable combustion environment to minimize emissions. Optimum spray performance achieves minimum surface wetting as well as promoting evaporation and diffusion if wetting occurs. Improvement in spray homogeneity is an important step to achieve this. Higher fuel pressure is initially considered to achieve improvements, as it is expected to improve mixture formation by reduction of wall wetting due to high atomization and lower penetration, as well as improvement in spray homogeneity.
Technical Paper

Development of High Accuracy NOx Sensor

2019-04-02
2019-01-0749
This paper presents an improvement in the accuracy of NOx sensors at high NOx concentration regions by optimizing the manufacturing process, sensor electrode materials and structure, in order to suppress the deterioration mechanism of sensor electrodes. Though NOx sensors generally consist of Pt/Au alloy based oxygen pump electrodes and Pt/Rh alloy based sensor electrodes, detailed experimental analysis of aged NOx sensors showed changes in the surface composition and morphology of the sensor electrode. The surface of the sensor electrode was covered with Au, which is not originally contained in the electrode, resulting in a diminished active site for NOx detection on the sensor electrode and a decrease in sensor output. Theoretical analysis using CAE with molecular dynamics supported that Au tends to be concentrated on the surface of the sensor electrode.
Technical Paper

Maximizing Coasting of 48 V Vehicles with Cold-Storage Evaporator

2018-05-30
2018-37-0023
One of the main features of 48 V vehicles is the ability to coast at high speeds with the Internal Combustion Engine (ICE) off. This can be realized due to the high torque and power the 48 V motor-generator provides which allows a quick and smooth re-cranking of the ICE. The coasting feature reduces the fuel consumption depending on frequency and duration of the coasting events. This depends in turn on driving pattern, driving style, State-of-Charge of the 48 V and 12 V batteries and the air-conditioning (A/C) system. In summer, if the A/C runs with a mechanical belt-driven compressor, the cabin inlet air temperature from the evaporator inevitably increases during each coasting event as the ICE turns off and cannot operate the compressor. If the evaporator temperature reaches a certain threshold at which the cabin comfort is noticeably affected, the ICE is re-cranked for resuming air-conditioning.
Technical Paper

Pressure Sensor Module for High Temperature,High Pressure, and Quick Response

2018-04-03
2018-01-0759
According to the advance of engine control development, demands for direct sensing of physical quantity have been growing. Regarding pressure sensing, key properties for direct sensing are robustness against high temperature and pressure, and response time in addition to accuracy. In this work, a pressure sensor module with these key properties was developed. First of all, a piezoelectric device was selected as a suitable sensing principle for the required properties because of its thermally stable piezoelectric effect and potential for simple installation structure. Regarding robustness against temperature, the sensor module was designed to form thermal isolation layer with outer housing which is optimized according to its application. Regarding robustness against pressure and response time, breakage of the piezoelectric element is the main technical issue.
Technical Paper

Mitigating Unknown Cybersecurity Threats in Performance Constrained Electronic Control Units

2018-04-03
2018-01-0016
Externally-connected Electronic Control Units (ECUs) contain millions of lines of code, which may contain security vulnerabilities. Hackers may exploit these vulnerabilities to gain code execution privileges, which affect public safety. Traditional Cybersecurity solutions fall short in meeting automotive ECU constraints such as zero false positives, intermittent connectivity, and low performance impact. A desirable solution would be deterministic, require minimum resources, and protect against known and unknown security threats. We integrated Autonomous Security on a BeagleBone Black (BBB) system to evaluate the feasibility of mitigating Cybersecurity risks against potential threats. We identified key metrics that should be measured, such as level of security, ease of integration and system performance impact. In this paper, we describe the integration and evaluation process and present its results.
Technical Paper

Development of a Compact and High-Performance Radiator for Thermal Management of Environmentally-Friendly Cars

2018-04-03
2018-01-0087
To comply with increasing fuel efficiency regulations, a low temperature radiator (LT radiator) is required to cool the charge-air system of a turbocharged engine. These engines are important to use for environmentally-friendly cars. Since heavy-duty and high-performance cars demand high cooling performance, the main radiator alone is typically insufficient in meeting the vehicle’s cooling requirements. An additional radiator installed in the front of the wheel-well is required to meet the extra cooling demand. In order to install this radiator in the front of the wheel-well, guaranteed performance in the limited packaging space and impact resistance of the leading tube edge are required. We developed the Supplementary Inner-Fin Radiator (SIR) which achieves the compact, high-performance, and durability requirements by use of an inner-fin tube (I/F tube). The purpose of this paper is to report our design approach and product specifications of the SIR.
Technical Paper

Development of High Accuracy and Quick Light-off NOx Sensor

2018-04-03
2018-01-0334
For the purpose of coping with the strengthening of NOx exhaust gas control and fuel consumption control, it is indispensable to improve the NOx purification capacity. In view of this, vehicle manufacturers are in the course of developing high performance SCR (Selective Catalytic Reduction) systems [1, 2]. For such SCR systems to be realized, high precision NOx sensors for carrying out urea injection quantity control and SCR degradation diagnosis are absolutely indispensable. Detection of NOx concentration by means of a NOx sensor is generally performed as follows: O2 is discharged by means of an O2 detection electrode; remaining NOx is decomposed by a NOx detection electrode; NOx concentration is then detected as electric current that flows when oxygen ions are conduct through solid electrolyte. In order to detect NOx of ppm-order, it is necessary to detect minute current of nA-order with high accuracy.
Technical Paper

A Sense of Distance and Augmented Reality for Stereoscopic Vision

2018-04-03
2018-01-1036
Head-up displays (HUDs) give visual information to drivers in an easy to understand manner and prevent traffic accidents. Augmented reality head-up displays (AR-HUDs) display the driving information overlaid on the actual scenery. The AR-HUD must allow the visual information and the actual scene to be viewed at the same time, and a sense of depth and distance are key factors in achieving this. Binocular parallax used in stereoscopic 3D display is one of the most useful methods of providing a sense of depth and distance. Generally, stereoscopic 3D displays must limit the image range to within Panum’s fusional area to ensure fusion of the stereoscopic images. However, when using a stereoscopic 3D display for an AR-HUD, the image range must extend beyond Panum’s fusional area to allow the visual information and the actual scene to be displayed at the same time.
Journal Article

Non-Contact Measurement Method for High Frequency Impedance of Load at the End of Wire Harness

2017-03-28
2017-01-1643
To avoid a trial and error adjustment for designing EMI filters, clarifying load impedance of operating condition, i.e., dynamic impedance of equipment is very useful. Therefore the need to a non-contact measurement method of the impedance connected to a wire harness is increasing rapidly. A measurement method using a network analyzer with two current probes was previously proposed. However, it was confirmed only up to 30 MHz. Many radio equipment operate above 30 MHz such as FM receivers and GPS receivers installed in vehicles. So increasing the measurement frequency is necessary in the auto industry. At first, we tried to expand the applicable frequency to 100 MHz, i.e., FM band. In this study, we applied the transmission line theory using the non-contact measurement method. Furthermore, in order to use the theory, the characteristic impedance and phase constant of the wire harness are required. So we made an additional measurement to estimate them.
Journal Article

Self-Excited Wound-Field Synchronous Motors for xEV

2017-03-28
2017-01-1249
Compact, high efficiency and high reliability are required for an xEV motor generator. IPM rotors with neodymium magnets are widely applied for xEV motors to achieve these requirements. However, neodymium magnet material has a big impact on motor cost and there is supply chain risk due to increased usage of these rare earth materials for future automotive xEV’s. On the other hand, a wound-field rotor does not need magnets and can achieve equivalent performance to an IPM rotor. However, brushes are required in order to supply current to the winding coil of the rotor. This may cause insulation issues on xEV motors which utilize high voltage and high currents. Therefore, it is suggested to develop a system which supplies electric energy to the rotor field winding coil from the stator without brushes by applying a transformer between stator coil and rotor field winding. Specifically, add auxiliary magnetic poles between each field winding pole and wind sub-coils to these poles.
X