Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Development of Thermal Fatigue Resistant Austenitic Cast Alloys for High Temperature Engine Exhaust Gas Systems

2003-03-03
2003-01-0830
As trends of automobile engine exhaust gas temperature are reducing emissions, the material for the exhaust components have been changed from ductile irons to ferritic cast alloys or stainless steel, further to austenitic cast alloys for higher performance engines. The current austenitic alloys, however, have thermal fatigue failure over 1273K. The authors developed excellent thermal fatigue resistant austenitic cast alloys, by investigating the effects of alloying elements on strength and thermal expansion, which correlate with thermal fatigue property. Developed alloys are expected to apply to exhaust components at gas temperatures over 1273K.
Technical Paper

Development of High Impact Strength Case Hardening Steel

2003-03-03
2003-01-1310
Improving the impact strength of the differential gears is one way to reduce the size and weight of the final drive unit. Previously, we developed high-strength steel for gear use by adding molybdenum and reducing impurities such as phosphorus and sulfur. However, additional improvement of impact strength is required these days due to higher engine torque and demands for further weight reductions. Toward that end, we focused on boron, which has been used as an element for improving hardenability, and analyzed what effect its addition would have on impact strength. Useful knowledge was obtained for improving impact strength through enhancement of grain boundary toughness. Various steels were then produced experimentally and used in gear strength tests. The results made it possible to improve impact strength while reducing the content of other alloys, resulting in the development of a chromium-molybdenum-boron case hardening steel with superior cold forgeabilty.
Technical Paper

Trends in Engine Valve Development for Automobiles and Motorcycles

2000-03-06
2000-01-0907
Engine valve development trends are to first, reduce the costly metal content and secondly, increase strength or reduce weight. These developments can be used to reduce valve cost or fuel consumption or increase power. The authors developed a new strain age hardening type alloy, NCF2415C, which has both good cold forgeability and heat resistance. Its chemical composition is Fe-24Ni-15Cr-2.2Ti-1.5Al-0.5Nb-0.02C-.006B-2Cu. This new alloy and the establishment f cold forging technology made it possible to develop cold forged exhaust valves having durability equal or better than the conventional hot forged exhaust valves.
Technical Paper

Development of Low-Nickel Superalloys for Exhaust Valves

1998-02-01
980703
Honda has developed, in collaboration with Hitachi Metals and Daido Steel, two types of low-nickel heat-resistant alloys for exhaust valves which are more cost effective than the conventional nickel alloys. They are NCF4015 that contains approximately 40% nickel and NCF3015 with approximately 30% nickel content. The two types of new alloys were developed based on our unique alloy design concept. Both alloys feature superb high-temperature strength and are capable of maintaining favorable material properties, even after an high-temperature exposure. The NCF4015 is compatible with the conventional Inconel 751 and 60Ni alloys in terms of high-temperature strength. The NCF3015 falls slightly behind the two metals, but overwhelms the 21-4N (SUH35) in high-temperature strength. The exhaust valves made of the two alloys developed have been used for mass production engines.
Technical Paper

A Free Machining Titanium Alloy for Connecting Rods

1991-02-01
910425
Some fundamental research on alloy design of the new titanium alloy and process design such as forging and surface treatment were carried out in order to develop new titanium alloy connecting rods. Free machining Ti-3Al-2V alloy is the best alloy for connecting rods because it has mechanical properties equivalent to quenched and tempered medium carbon steels, a popular material for connecting rods. The alloy can be machined at higher speed than the most popular titanium alloy Ti-6Al-4V. Forging in the β phase temperature range is desirable to enable one heat forging of connecting rods and to eliminate crack initiation. New technology such as induction heating in forging, pickling after forging and coating on large ends were developed. As a result of this research, new titanium alloy connecting rods which can be applicable to mass production have been developed.
Technical Paper

High Performance Differential Gear

1989-02-01
890531
Excellent fuel economy and high performance have been urgent in Japanese automobile industries. With increasing engine power, many of the power train components have to withstand higher loads. Differential pinion gear being one of those highly stressed parts, excellent fatigue and shock resistance have been demanded. At first the fundamental study on the fatigue and impact crack behavior of carburized components was studied and the new grade composed of 0.18%C-0.7%Mn-1.0%Cr-0.4%Mo was alloy designed. Furthermore, Si and P is reduced less than 0.15 and 0.015%, respectively aiming at the reduction of intergranular oxidation and improved case toughness. The differential gear assembly test has proved that the new grade shows three times as high impact strength as that of conventional steel, SCM418, and almost the same as that of SNCM420 containing 1.8%Ni.
Technical Paper

High Strength Steel for Cylinder Head Bolt

1984-02-01
840573
JIS SCM440M (SAE4140H), heat treated to the strength level of 120 to 140 kgf/mm2(171 to 199 ksi) -ISO 12.9 class-, is currently used for cylinder head bolts of Japanese passenger cars. Lower alloy steels, such as SAE 1541 for example, have not been substituted for JIS SCM440H so far because of their high susceptibility to delayed fracture. Daido Steel has tackled this problem and succeeded in applying the lower alloy SAE 1541 steel to 12.9 class cylinder head bolts by enhancing the resistance to delayed fracture by reducing impurities, especially sulphur. In this paper mechanical properties and delayed fracture characteristics of SAE 1541-ULS (Ultra Low Sulphur) steel are reported. 1541-ULS (S<0.005%, S+P< 0.020%) shows outstanding resistance to delayed fracture compared to conventional steel. Furthermore, the amount of MnS inclusions decreases remarkably in ULS steel, which results in high toughness.
Technical Paper

Medium Carbon-Boron Steels for Automobile Components

1982-02-01
820123
In order to save molybdenum (Mo) in chromium - molybdenum steels for automobile components, medium carbon - boron steels were investigated. Boron is not a new alloying element for structural steels, however, to date boron steels have not been widely used because of their unstable hardenability and poor machinability. Therefore, in this paper, the optimum content of boron was reexamined, and also the appropriate addition of titanium as a stabilizer of boron was investigated from the view point of hardenability. Furthermore the upper limit of manganese (Mn) content was studied to keep good machinability. The new steel grades, established on the basis of the above fundamental research, have been used on vital components of passenger cars.
Technical Paper

A New Iron-Base Superalloy for Exhaust Valves

1981-02-01
810032
For heavy duty gasoline or diesel engines, exhaust valves of 21-2N or 21-4N are generally coated by cobalt-base hard facing alloys, at faces. But the sluggish supply and the spiraling price of cobalt recently forced automakers to adopt valves of high-grade superalloys without hard facing. Candidate superalloys for high-performance exhaust valves are gamma-prime strengthened nickel-base alloys such as Inconel 751 and Nimonic 80A. Unfortunately above-mentioned alloys are too expensive for automobile components. So authors tried to develop a gamma-prime strengthened iron-base alloy, which bears basically 40% Ni-19% Cr-Al-Ti. To optimize Al and Ti contents the effect of the total amount and the ratio of them was examined thoroughly on hardness, strength and corrosion resistance of experimental alloys at elevated temperatures.
X