Refine Your Search

Topic

Author

Search Results

Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
Technical Paper

Improving Low Frequency Torsional Vibrations NVH Performance through Analysis and Test

2007-05-15
2007-01-2242
Low frequency torsional vibrations can be a significant source of objectionable vehicle vibrations and in-vehicle boom, especially with changes in engine operation required for improved fuel economy. These changes include lower torque converter lock-up speeds and cylinder deactivation. This paper has two objectives: 1) Examine the effect of increased torsional vibrations on vehicle NVH performance and ways to improve this performance early in the program using test and simulation techniques. The important design parameters affecting vehicle NVH performance will be identified, and the trade-offs required to produce an optimized design will be examined. Also, the relationship between torsional vibrations and mount excursions, will be examined. 2) Investigate the ability of simulation techniques to predict and improve torsional vibration NVH performance. Evaluate the accuracy of the analytical models by comparison to test results.
Technical Paper

Experimental Modal Methodologies for Quantification of Body/Chassis Response to Brake Torque Variation

2007-05-15
2007-01-2343
Brake torque variation is a source of objectionable NVH body/chassis response. Such input commonly results from brake disk thickness variation. The NVH dynamic characteristics of a vehicle can be assessed and quantified through experimental modal testing for determination of mode resonance frequency, damping property, and shape. Standard full vehicle modal testing typically utilizes a random input excitation into the vehicle frame or underbody structure. An alternative methodology was sought to quantify and predict body/chassis sensitivity to brake torque variation. This paper presents a review of experimental modal test methodologies investigated for the reproduction of vehicle response to brake torque variation in a static laboratory environment. Brake caliper adapter random and sine sweep excitation input as well as body sine sweep excitation in tandem with an intentionally locked brake will be detailed.
Technical Paper

Application of the Modal Compliance Technique to a Vehicle Body in White

2007-05-15
2007-01-2355
This paper describes the application of the modal compliance method to a complex structure such as a vehicle body in white, and the extension of the method from normal modes to the complex modes of a complete vehicle. In addition to the usual bending and torsion calculations, the paper also describes the application of the method to less usual tests such as second torsion, match-boxing and breathing. We also show how the method can be used to investigate the distribution of compliance throughout the structure.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

248mm Elliptical Torque Converter from DaimlerChrysler Corporation

2007-04-16
2007-01-0241
The need for efficient space utilization has provided a framework for the design of a 248mm family of torque converters that supports a wide choice of engine and transmission combinations. The axial length of the part and its weight have been substantially reduced while the performance range has been broadened without degradation of efficiency. The new converter operates in an expanded slipping clutch mode. It significantly contributes to the performance and fuel economy improvements of related vehicles. To meet the cost target, the comprehensive lineup and the resulting complexity have required a high level of component interchangeability. During the design phase, the manufacturing core competencies were scrutinized and process redundancies eliminated, both resulting in optimization of material selection and applicable technology.
Technical Paper

Reliability Analysis of Dynamometer Loading Parameters during Vehicle Cell Testing

2007-04-16
2007-01-0600
In automotive testing, a chassis dynamometer is typically used, during cell testing, to evaluate vehicle performance by simulating actual driving conditions. The use of indoor cell testing has the advantage of running controlled tests where the cell temperature and humidity and solar loads can be well controlled. Driving conditions such as vehicle speed, wind speed and grade can be also controlled. Thus, repeated tests can be conducted with minimum test variations. The tractive effort required at the wheels of a vehicle for a given set of operating parameters is determined by taking into account a set of variables which affect vehicle performance. The forces considered in determination of the tractive effort include the constant friction force, variable friction force due to mechanical and tire friction, forces due to inertia and forces due to aerodynamic and wind effects. In addition, forces due to gravity are considered when road grades are simulated.
Technical Paper

Sensitivity Analysis of Powertrain Cooling System Performance

2007-04-16
2007-01-0598
This paper identifies the difference in powertrain cooling system content levels using a nominal and a +3 Standard deviation maximum temperature design approach. Variation simulation analysis tools are used along with a 1-D cooling system performance model to predict resulting temperature distribution for different combinations of input variable populations. The analysis will show differential in powertrain cooling system content, mass, and impact to fuel economy for a nominal vs. +3 sigma design approach.
Technical Paper

Simulation Process to Investigate Suspension Sensitivity to Brake Judder

2007-04-16
2007-01-0590
Brake judder, which is a low frequency excitation of the suspension and thus, the body structure during low-G braking, is mainly felt at the steering wheel and throughout the vehicle structure. Brake judder is a problem that costs manufacturers millions of dollars in warranty cost and undesirable trade offs. The magnitude of judder response depends not only on the brake torque variation, but also on the suspension design character-istics. This paper discusses the judder simulation process using ADAMS software to investigate the suspension design sensitivity to the first order brake judder performance. The paper recommends “tuning knobs” to suspension designers and vehicle development engineers to resolve issues in the design and development stages. Various suspension design varia-bles including geometry and compliances as well as brake related characteristics were investigated.
Technical Paper

Optimization of Head Impact Waveform to Minimize HIC

2007-04-16
2007-01-0759
To mitigate head impact injuries of vehicle occupants in impact accidents, the FMVSS 201 requires padding of vehicle interior so that under the free-moving-head-form impact, the head injury criterion (HIC) is below the limit. More recently, pedestrian head impact on the vehicle bonnet has been a subject being studied and regulated as requirements to the automobile manufacturers. Over the years, the square wave has been considered as the best waveform for head impacts, although it is impractical to achieve. This paper revisits the head impact topic and challenges the optimality of aiming at the square waveform. It studies several different simple waveforms, with the objective to achieve minimal HIC or minimal crush space required in head-form impacts. With that it is found that many other waveforms can be more efficient and more practical than the square wave, especially for the pedestrian impact.
Technical Paper

Laminar Flow Whistle on a Vehicle Side Mirror

2007-04-16
2007-01-1549
In the development of several outside mirror designs for vehicles, a high frequency noise (whistling) phenomenon was experienced. First impression was that this might be due to another source on the vehicle (such as water management channels) or a cavity noise; however, upon further investigation the source was found to be the mirror housing. This “laminar whistle” is related to the separation of a laminar boundary layer near the trailing edges of the mirror housing. When there is a free stream impingement on the mirror housing, the boundary layer starts out as laminar, but as the boundary layer travels from the impingement point, distance, speed, and roughness combine to trigger the transition turbulent. However, when the transition is not complete, pressure fluctuations can cause rapidly changing flow patterns that sound like a whistle to the observer. Because the laminar boundary layer has very little energy, it does not allow the flow to stay attached on curved surfaces.
Technical Paper

Stamping Effect on Oil Canning and Dent Resistance Performances of an Automotive Roof Panel

2007-04-16
2007-01-1696
The objective of this paper is to investigate the effect of stamping process on oil canning and dent resistance performances of an automotive roof panel. Finite element analysis of stamping processes was carried out using LS-Dyna to obtain thickness and plastic strain distributions under various forming conditions. The forming results were mapped onto the roof model by an in-house developed mapping code. A displacement control approach using an implicit FEM code ABAQUS/Standard was employed for oil canning and denting analysis. An Auto/Steel Partnership Standardized Test Procedure for Dent Resistance was employed to establish the analysis model and to determine the dent and oil canning loads. The results indicate that stamping has a positive effect on dent resistance and a negative effect on oil canning performance. As forming strains increase, dent resistance increases while the oil canning load decreases.
Technical Paper

Advancing the State of Strong Hybrid Technology

2006-10-16
2006-21-0058
As the hybrid automotive market becomes quickly saturated with highly competitive products and vehicles, auto manufacturers struggle with business models and the combination of current manufacturing with next generation development. The hybrid development cooperation amongst General Motors, DaimlerChrysler, and BMW offers a new business model that promotes the advancement of the state of strong hybrid technology while maintaining the strong global leadership and competition.
Technical Paper

A Grammatical Evolution Approach to System Identification of Laser Lap Welding

2006-04-03
2006-01-1614
Laser lap welding quality is a non-linear response based on a host of categorical and numeric material and process variables. This paper describes a Grammatical Evolution approach to the structure identification of the laser lap welding process and compares its performance with linear regression and a neuro-fuzzy inference system.
Technical Paper

Study on Simplified Finite Element Simulation Approaches of Fastened Joints

2006-04-03
2006-01-1268
In this paper, mechanism of fastened joints is described; numerical analyses and testing calibrations are conducted for the possible simplified finite element simulation approaches of the joints; and the best simplified approach is recommended. The approaches cover variations of element types and different ways that the joints are connected. The element types include rigid elements, deformable bar elements, solid elements, shell elements and combinations of these element types. The different ways that the joints are connected include connections of one row of nodes, two row of nodes and alternate nodes in the first and second rows. These simplified simulation approaches are numerically evaluated on a joint of two plates connected by a single fastener. The fundamental loads, bending with shear, shear and tension are applied in the numerical analyses. A detailed model including contact and clamp load are analyzed simultaneously to provide “accurate results”.
Technical Paper

Reliability and Robust Design of Automotive Thermal Systems - A Federated Approach

2006-04-03
2006-01-1576
Today automotive thermal systems development is a joint effort between an OEM and its suppliers. This paper presents a pilot program showing how OEMs and suppliers can jointly develop a reliable and robust thermal system using CAE tools over the internet. Federated Intelligent Product Environment (FIPER) has been used to establish B2B communication between OEMs and suppliers. Suppliers remotely run thermal systems computer models at the OEM site using the FIPER B2B feature.
Technical Paper

The USAMP Magnesium Powertrain Cast Components Project

2006-04-03
2006-01-0522
Over the past five years, the US Automotive Materials Partnership (USAMP) has brought together representatives from DaimlerChrysler, General Motors, Ford Motor Company and over 40 other participant companies from the Mg casting industry to create and test a low-cost, Mg-alloy engine that would achieve a 15 - 20 % Mg component weight savings with no compromise in performance or durability. The block, oil pan, and front cover were redesigned to take advantage of the properties of both high-pressure die cast (HPDC) and sand cast Mg creep- resistant alloys. This paper describes the alloy selection process and the casting and testing of these new Mg-variant components. This paper will also examine the lessons learned and implications of this pre-competitive technology for future applications.
Technical Paper

Development of a Computerized Digital Resonance Fatigue Test Controller with Load Feedback Management

2006-04-03
2006-01-1620
In this report, the DCX Stress Lab and the Tool Development & Test Support groups investigated automating a resonant bending crankshaft fatigue test. Fatigue testing, in general, is a laborious process since many samples are needed for analysis. This makes development cost and speed dependant on the component test efficiency. In the case of crankshaft resonant bending testing, both cost and speed are influenced by the manual feedback operation needed to run the current procedure. In order to increase the efficiency of this process, this project sought to automate the following tasks: maintaining the load on the part, reacting to resonance changes in the part, mapping resonance changes, logging the number of cycles, and discerning resonance frequency shift failure modes objectively.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

Measurement of Transfer Case Imbalance

2005-05-16
2005-01-2297
Different methodologies to test transfer case imbalance were investigated in this study. One method utilized traditional standard single plane and two plane methods to measure the imbalance of the transfer case when running it on a dynamic balance machine at steady RPM, while a second method utilized accelerometers and a laser vibrometer to measure vertical vibration on the transfer case when running it on a dynamic balance machine in 4 Hi open mode during a run up from 1000 to 4000 RPM with a 40 RPM difference between the input and output shaft speeds. A comparison of all of the measurements for repeatability and accuracy was done with the goal of determining an appropriate and efficient method that generates the most consistent results. By using the traditional method, the test results were not repeatable. This may be due to the internal complexity of transfer cases. With the second method, good correlation between the measurements was obtained.
X