Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Powering Tomorrow's Light, Medium, and Heavy-Duty Vehicles: A Comprehensive Techno-Economic Examination of Emerging Powertrain Technologies

2024-04-09
2024-01-2446
This paper presents a comprehensive analysis of emerging powertrain technologies for a wide spectrum of vehicles, ranging from light-duty passenger vehicles to medium and heavy-duty trucks. The study focuses on the anticipated evolution of these technologies over the coming decades, assessing their potential benefits and impact on sustainability. The analysis encompasses simulations across a wide range of vehicle classes, including compact, midsize, small SUVs, midsize SUVs, and pickups, as well as various truck types, such as class 4 step vans, class 6 box trucks, and class 8 regional and long-haul trucks. It evaluates key performance metrics, including fuel consumption, estimated purchase price, and total cost of ownership, for these vehicles equipped with advanced powertrain technologies such as mild hybrid, full hybrid, plug-in hybrid, battery electric, and fuel cell powertrains.
Technical Paper

Energy Savings Impact of Eco-Driving Control Based on Powertrain Characteristics in Connected and Automated Vehicles: On-Track Demonstrations

2024-04-09
2024-01-2606
This research investigates the energy savings achieved through eco-driving controls in connected and automated vehicles (CAVs), with a specific focus on the influence of powertrain characteristics. Eco-driving strategies have emerged as a promising approach to enhance efficiency and reduce environmental impact in CAVs. However, uncertainty remains about how the optimal strategy developed for a specific CAV applies to CAVs with different powertrain technologies, particularly concerning energy aspects. To address this gap, on-track demonstrations were conducted using a Chrysler Pacifica CAV equipped with an internal combustion engine (ICE), advanced sensors, and vehicle-to-infrastructure (V2I) communication systems, compared with another CAV, a previously studied Chevrolet Bolt electric vehicle (EV) equipped with an electric motor and battery.
Technical Paper

Modeling Pre-Chamber Assisted Efficient Combustion in an Argon Power Cycle Engine

2024-04-09
2024-01-2690
The Argon Power Cycle (APC) is a novel zero-emission closed-loop argon recirculating engine cycle which has been developed by Noble Thermodynamics Systems, Inc. It provides a significant gain in indicated thermal efficiency of the reciprocating engine by breathing oxygen and argon rather than air. The use of argon, a monatomic gas, greatly increases the specific heat ratio of the working fluid, resulting in a significantly higher ideal Otto cycle efficiency. This technology delivers a substantial improvement in reciprocating engine performance, maximizing the energy conversion of fuel into useful work. Combined Heat and Power (CHP) operating under the APC represents a promising solution to realize a net-zero-carbon future, providing the thermal energy that hard-to-electrify manufacturing processes need while at the same time delivering clean, dispatchable, and efficient power.
Technical Paper

Computational Investigation of Hydrogen-Air Mixing in a Large-Bore Locomotive Dual Fuel Engine

2024-04-09
2024-01-2694
The internal combustion engine (ICE) has long dominated the heavy-duty sector by using liquid fossil fuels such as diesel but global commitments by countries and OEMs to reduce lifecycle carbon dioxide (CO2) emissions has garnered interest in alternative fuels like hydrogen. Hydrogen is a unique gaseous fuel that contains zero carbon atoms and has desired thermodynamic properties of high energy density per unit mass and high flame speeds. However, there are challenges related to its adoption to the heavy-duty sector as a drop-in fuel replacement for compression ignition (CI) diesel combustion given its high autoignition resistance. To overcome this fundamental barrier, engine manufacturers are exploring dual fuel combustion engines by substituting a fraction of the diesel fuel with hydrogen which enables fuel flexibility when there is no infrastructure and retrofittability to existing platforms.
Technical Paper

Comprehensive Cradle to Grave Life Cycle Analysis of On-Road Vehicles in the United States Based on GREET

2024-04-09
2024-01-2830
To properly compare and contrast the environmental performance of one vehicle technology against another, it is necessary to consider their production, operation, and end-of-life fates. Since 1995, Argonne’s GREET® life cycle analysis model (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) has been annually updated to model and refine the latest developments in fuels and materials production, as well as vehicle operational and composition characteristics. Updated cradle-to-grave life cycle analysis results from the model’s latest release are described for a wide variety of fuel and powertrain options for U.S. light-duty and medium/heavy-duty vehicles. Light-duty vehicles include a passenger car, sports utility vehicle (SUV), and pick-up truck, while medium/heavy-duty vehicles include a Class 6 pickup-and-delivery truck, Class 8 day-cab (regional) truck, and Class 8 sleeper-cab (long-haul) truck.
Technical Paper

Drivetrain Pressure Spike Evaluation Methodology & Optimization: Simulation and Testing Correlation

2024-01-16
2024-26-0277
This paper presents a virtual analysis method for pressure spike estimation and optimization of hydraulic system architecture for off-highway applications with hydraulically actuated clutch. This pressure spike leads to a very high torque spike in driveline components during clutch pop-up conditions in puddling operations. These torque spikes lead to potential failure of driveline components i.e., gear, shaft, bearing and torsional damper during sudden engagement events. To assess the hydraulic system performance during clutch pop-up cornering conditions is very challenging and leads to compromise on operator safety in the paddy field. It is essential to develop a simulation methodology in a virtual environment to understand the system behavior during clutch pop-up condition and impact of various hydraulic system parameters. This paper describes a Model Based System Design (MBSD) approach for understanding hydraulic system pressure spike phenomenon and dynamic response.
Technical Paper

Residual Gas Fraction Measurement and Estimation of the CFR Octane Rating Engine Operating Under HCCI Conditions

2023-09-29
2023-32-0010
The autoignition chemistry of fuels depends on the pressure, temperature, and time history that the fuel-air mixture experiences during the compression stroke. While piezoelectric pressure transducers offer excellent means of pressure measurement, temperature measurements are not commonly available and must be estimated. Even if the pressure and temperature at the intake and exhaust ports are measured, the residual gas fraction (RGF) within the combustion chamber requires estimation and greatly impacts the temperature of the fresh charge at intake valve closing. This work replaced the standard D1 Detonation Pickup of a CFR engine with a rapid sampling valve to allow for in-cylinder gas sampling at defined crank-angle times during the compression stroke. The extracted cylinder contents were captured in an emissions sample bag and its composition was subsequently analyzed in an AVL i60 emissions bench.
Technical Paper

Transmission Shifting Analysis and Model Validation for Medium Duty Vehicles

2023-04-11
2023-01-0196
Over the past couple of years, Argonne National Laboratory has tested, analyzed, and validated automobile models for the light duty vehicle class, including several types of powertrains including conventional, hybrid electric, plug-in hybrid electric and battery electric vehicles. Argonne’s previous works focused on the light duty vehicle models, but no work has been done on medium and heavy-duty vehicles. This study focuses on the validation of shifting control in advanced automatic transmission technologies for medium duty vehicles by using Argonne’s model-based high-fidelity, forward-looking, vehicle simulation tool, Autonomie. Different medium duty vehicles, from Argonne’s own fleet, including the Ram 2500, Ford F-250 and Ford F-350, were tested with the equipment for OBD (on-board diagnostics) signal data record. For the medium duty vehicles, a workflow process was used to import test data.
Journal Article

Zero Dimension Heat Release Modeling for Gasoline, Ethanol, Isobutanol and Diisobutylene Operating in Compression Ignition with Varying Injection Strategies

2023-04-11
2023-01-0188
Gasoline compression ignition shows great potential in reducing NOx and soot emissions with competitive thermal efficiency by leveraging the properties of gasoline fuels and the high compression ratio of compression ignition engines operating air-dilute. Meanwhile, its control becomes challenging due to not only the properties of different gasoline-type fuels but also the impacts of injection strategies on the in-cylinder reactivity. As such, a computationally efficient zero-dimension combustion model can significantly reduce the cost of control development. In this study, a previously developed zero-dimension combustion model for gasoline compression ignition was extended to multiple gasoline-type fuel blends and a port fuel injection/direct fuel injection strategy. Tests were conducted on a 12.4-liter heavy-duty engine with five fuel blends.
Journal Article

Development of a Supercharged Octane Number and a Supercharged Octane Index

2023-04-11
2023-01-0251
Gasoline knock resistance is characterized by the Research and Motor Octane Number (RON and MON), which are rated on the CFR octane rating engine at naturally aspirated conditions. However, modern automotive downsized boosted spark ignition (SI) engines generally operate at higher cylinder pressures and lower temperatures relative to the RON and MON tests. Using the naturally aspirated RON and MON ratings, the octane index (OI) characterizes the knock resistance of gasolines under boosted operation by linearly extrapolating into boosted “beyond RON” conditions via RON, MON, and a linear regression K factor. Using OI solely based on naturally aspirated RON and MON tests to extrapolate into boosted conditions can lead to significant errors in predicting boosted knock resistance between gasolines due to non-linear changes in autoignition and knocking characteristics with increasing pressure conditions.
Journal Article

A Computational Investigation of Piston Bowl Geometry Effects on PPCI-Diffusion Combustion in a Light-Duty GCI Engine

2023-04-11
2023-01-0275
A PPCI-diffusion combustion strategy has shown the potential to achieve high efficiency, clean gasoline compression ignition (GCI) combustion across the full engine operating range. By conducting a 3-D CFD-led combustion system design campaign, this investigation was focused on developing a next generation (NextGen), step-lipped piston design concept in a 2.6L advanced light-duty GCI engine. Key geometric features of the NextGen piston bowl were parametrized and studied with customized spray targeting. A low lip positioning design with 128° spray targeting was found to provide the best performance. Fuel injection strategy optimization was performed at a full-load operating point (OP), 2000 rpm/24 bar closed-cycle IMEP (IMEPcc).
Technical Paper

Evaluating Class 6 Delivery Truck Fuel Economy and Emissions Using Vehicle System Simulations for Conventional and Hybrid Powertrains and Co-Optima Fuel Blends

2022-09-13
2022-01-1156
The US Department of Energy’s Co-Optimization of Engine and Fuels Initiative (Co-Optima) investigated how unique properties of bio-blendstocks considered within Co-Optima help address emissions challenges with mixing controlled compression ignition (i.e., conventional diesel combustion) and enable advanced compression ignition modes suitable for implementation in a diesel engine. Additionally, the potential synergies of these Co-Optima technologies in hybrid vehicle applications in the medium- and heavy-duty sector was also investigated. In this work, vehicles system were simulated using the Autonomie software tool for quantifying the benefits of Co-Optima engine technologies for medium-duty trucks. A Class 6 delivery truck with a 6.7 L diesel engine was used for simulations over representative real-world and certification drive cycles with four different powertrains to investigate fuel economy, criteria emissions, and performance.
Technical Paper

The Impact of Fuel Injection Strategies and Compression Ratio on Combustion and Performance of a Heavy-Duty Gasoline Compression Ignition Engine

2022-08-30
2022-01-1055
Gasoline compression ignition using a single gasoline-type fuel has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high temperature combustion with reduced amounts of exhaust gas recirculation appears more practical. Furthermore, for high temperature Gasoline compression ignition, an effective aftertreatment system allows high thermal efficiency with low tailpipe-out emissions. In this work, experimental testing was conducted on a 12.4 L multi-cylinder heavy-duty diesel engine operating with high temperature gasoline compression ignition combustion using EEE gasoline.
Technical Paper

Vehicle-In-The-Loop Workflow for the Evaluation of Energy-Efficient Automated Driving Controls in Real Vehicles

2022-03-29
2022-01-0420
This paper introduces a new systematic workflow for the rapid evaluation of energy-efficient automated driving controls in real vehicles in controlled laboratory conditions. This vehicle-in-the-loop (VIL) workflow, largely standardized and automated, is reusable and customizable, saves time and minimizes costly dynamometer time. In the first case study run with the VIL workflow, an automated car driven by an energy-efficient driving control previously developed at Argonne used up to 22 % less energy than a conventional control. In a VIL experiment, the real vehicle, positioned on a chassis dynamometer, has a digital twin that drives in a virtual world that replicates real-life situations, such as approaching a traffic signal or following other vehicles.
Technical Paper

Evolution and Redistribution of Residual Stress in Welded Plates During Fatigue Loading

2022-03-29
2022-01-0257
The presence of residual stresses affects the fatigue response of welded components. In the present study of thick welded cantilever specimens, residual stresses were measured in two A36 steel samples, one in the as-welded condition, and one subjected to a short history of bending loads where substantial local plasticity is expected at the fatigue hot-spot weld toe. Extensive X-Ray Diffraction (XRD) measurements describe the residual stress state in a large region above the weld toe both in an untested as-welded sample and in a sample subjected to a short load history that generated an estimated 0.01 strain amplitude at the stress concentration zone at the weld toe. The results show that such a test will significantly alter the welding-induced residual stresses. Fatigue life prediction methods need to be aware that such alterations are possible and incorporate the effects of such cyclic stress relaxation in life computations.
Technical Paper

Design of a Rule-Based Controller and Parameter Optimization Using a Genetic Algorithm for a Dual-Motor Heavy-Duty Battery Electric Vehicle

2022-03-29
2022-01-0413
This paper describes a configuration and controller, designed using Autonomie,1 for dual-motor battery electric vehicle (BEV) heavy-duty trucks. Based on the literature and current market research, this model was designed with two electric motors, one on the front axle and the other on the rear axle. A rule-based control algorithm was designed for the new dual-motor BEV, based on the model, and the control parameters were optimized by using a genetic algorithm (GA). The model was simulated in diverse driving cycles and gradeability tests. The results show both a good following of the desired cycle and achievement of truck gradeability performance requirements. The simulation results were compared with those of a single-motor BEV and showed reduced energy consumption with the high-efficiency operation of the two motors.
Technical Paper

Numerical Investigation of the Impact of Fuel Flow Rate on Combustion in a Heavy-Duty Diesel Engine with a Multi-Row Nozzle Injector

2022-03-29
2022-01-0395
Diesel engines are one of the most popular combustion systems used in different types of heavy-duty applications because of higher efficiencies compared to the spark ignition engines. Combustion phasing and the rate of heat release in diesel engines are controlled by the rate at which the fuel is injected into the combustion chamber near top dead center. In this work, computational fluid dynamics (CFD) was employed to simulate the combustion behavior of a heavy-duty diesel engine equipped with a 16-hole injector, in which the nozzles were arranged in two individual rows. The two rows of nozzles have differential flow rate due to the geometrical construction of the injector. Combustion and performance characteristics of the engine were compared with and without considering the differential flow rate of the nozzle rows at a range of injection timing values.
Technical Paper

Bulk Spray and Individual Plume Characterization of LPG and Iso-Octane Sprays at Engine-Like Conditions

2022-03-29
2022-01-0497
This study presents experimental and numerical examination of directly injected (DI) propane and iso-octane, surrogates for liquified petroleum gas (LPG) and gasoline, respectively, at various engine like conditions with the overall objective to establish the baseline with regards to fuel delivery required for future high efficiency DI-LPG fueled heavy-duty engines. Sprays for both iso-octane and propane were characterized and the results from the optical diagnostic techniques including high-speed Schlieren and planar Mie scattering imaging were applied to differentiate the liquid-phase regions and the bulk spray phenomenon from single plume behaviors. The experimental results, coupled with high-fidelity internal nozzle-flow simulations were then used to define best practices in CFD Lagrangian spray models.
Technical Paper

Evaluating Emerging Engine and Powertrain Technologies on Globally Popular Vehicle Platforms

2021-09-21
2021-01-1247
This paper examines, for several major markets, the fuel savings achievable with advanced engine technologies as “drop-in” substitutions for existing engines, as well as from increased electric hybridization of the powertrain. Key segments of light duty vehicles in major automotive markets including the US, China, EU, Japan, India, and Saudi Arabia were examined. Representative vehicles for each market were simulated using advanced vehicle modeling tools and evaluated on the relevant local regulatory cycle or cycles. In all cases, to ensure meaningful results, the performance of a given vehicle was maintained as engine and powertrain technology was varied through appropriate resizing of powertrain components. In total, 4 engine technologies and 5 powertrain architectures were simulated for 5 different markets.
Technical Paper

Accurately Simulating the Performance of Gasoline-Like Fuels in 1-D Hydraulic Injection System Models Operating at High Pressures

2021-04-06
2021-01-0389
Recent research has shown that gasoline compression ignition (GCI) improves the soot-NOx tradeoff of traditional diesel engines due to the beneficial properties of light distillate fuels. However, system level optimization of a new engine concept is ultimately needed to maximize fuel economy and emissions improvements. Along with air and aftertreatment systems, the fuel system also requires further development to enable GCI. One important design tool for fuel system hardware is 1-D hydraulic modeling. Although accurate tabulations of diesel or equivalent calibration fluid properties are available in 1-D modelling software packages, the same situation does not exist for gasoline-like fuels, especially at conditions encountered in the high-pressure injection equipment needed to support GCI. This study presents a methodology for generating accurate liquid property databases of complex, multi-component light distillate fuels that can be used in high-pressure 1-D hydraulic models.
X