Refine Your Search

Topic

Author

Search Results

Journal Article

Real-time Sensing of Particulate Matter in a Vehicle Exhaust System

2017-03-28
2017-01-1639
Onboard diagnostic regulations require performance monitoring of diesel particulate filters used in vehicle aftertreatment systems. Delphi has developed a particulate matter (PM) sensor to perform this function. The objective of this sensor is to monitor the soot (PM) concentration in the exhaust downstream of the diesel particulate filter which provides a means to calculate filter efficiency. The particulate matter sensor monitors the deposition of soot on its internal sensing element by measuring the resistance of the deposit. Correlations are established between the soot resistance and soot mass deposited on the sensing element. Currently, the sensor provides the time interval between sensor regeneration cycles, which, with the knowledge of the exhaust gas flow parameters, is correlated to the average soot concentration.
Technical Paper

Development of Electrical-Electronic Controls for a Gasoline Direct Injection Compression Ignition Engine

2016-04-05
2016-01-0614
Delphi is developing a new combustion technology called Gasoline Direct-injection Compression Ignition (GDCI), which has shown promise for substantially improving fuel economy. This new technology is able to reuse some of the controls common to traditional spark ignition (SI) engines; however, it also requires several new sensors and actuators, some of which are not common to traditional SI engines. Since this is new technology development, the required hardware set has continued to evolve over the course of the project. In order to support this development work, a highly capable and flexible electronic control system is necessary. Integrating all of the necessary functions into a single controller, or two, would require significant up-front controller hardware development, and would limit the adaptability of the electronic controls to the evolving requirements for GDCI.
Technical Paper

Experimental Characterization of DI Gasoline Injection Processes

2015-09-01
2015-01-1894
This work investigates the injection processes of an eight-hole direct-injection gasoline injector from the Engine Combustion Network (ECN) effort on gasoline sprays (Spray G). Experiments are performed at identical operating conditions by multiple institutions using standardized procedures to provide high-quality target datasets for CFD spray modeling improvement. The initial conditions set by the ECN gasoline spray community (Spray G: Ambient temperature: 573 K, ambient density: 3.5 kg/m3 (∼6 bar), fuel: iso-octane, and injection pressure: 200 bar) are examined along with additional conditions to extend the dataset covering a broader operating range. Two institutes evaluated the liquid and vapor penetration characteristics of a particular 8-hole, 80° full-angle, Spray G injector (injector #28) using Mie scattering (liquid) and schlieren (vapor).
Technical Paper

Cavity Fill Balancing Technique for Rubber Injection Molding

2015-04-14
2015-01-0715
Balancing the fill sequence of multiple cavities in a rubber injection mold is desirable for efficient cure rates, optimized cure times, and consistent quality of all molded parts. The reality is that most rubber injection molds do not provide a consistent uniform balanced fill sequence for all the cavities in the mold - even if the runner and cavity layout is geometrically balanced. A new runner design technique, named “The Vanturi Effect”, is disclosed to help address the inherent deficiencies of traditional runner and cavity layouts in order to achieve a more balanced fill sequence. Comparative analysis of molded runner samples reveals a significant and positive improvement in runner and cavity fill balancing when the Vanturi Effect is integrated into the runner design.
Technical Paper

Diffusion Combustion Phenomena in GDi Engines caused by Injection Process

2013-04-08
2013-01-0261
Particulate matter emissions are no longer only a concern in the development of Diesel engine powertrains. In addition to particulate mass requirements, the new European legislation for Euro 6 includes a proposed particulate number requirement for all vehicles with gasoline direct injection engines. Euro 6b will establish the first requirement in 2014 which will then be significantly reduced with the implementation of Euro 6c in 2017. This might coincide with the introduction of the World Light Duty Testing Procedure vehicle drive cycle test, raising the bar even higher to reach compliance to the particulate number legislative requirements. Several different investigations revealed that the particulate number emission will become very challenging while the limit for particulate mass can already be met with today's applications.
Technical Paper

GDi Skew-Angled Nozzle Flow and Near-Field Spray Analysis using Optical and X-Ray Imaging and VOF-LES Computational Fluid Dynamics

2013-04-08
2013-01-0255
Improvement of spray atomization and penetration characteristics of the gasoline direct-injection (GDi ) multi-hole injector is a critical component of the GDi combustion developments, especially in the context of engine down-sizing and turbo-charging trend that is adopted in order to achieve the European target CO₂, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards optimization of the nozzle designs, in order to improve the GDi multi-hole spray characteristics. This publication reports VOF-LES analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries. The objective is to extend previous works to include the effect of nozzle-hole skew angle on the nozzle flow and spray primary breakup. VOF-LES simulations of a single nozzle-hole of a purpose-designed GDi multi-hole seat geometry, with three identical nozzle-holes per 120° seat segment, are performed.
Technical Paper

Energy Harvesting as Strategy for Reducing Vehicles Emissions

2012-10-02
2012-36-0114
In vehicular mobility context, it is extremely important for the environmental sustainability that the available energy will be used as efficiently as possible, both in the use of internal combustion engines (ICE) as powertrain, as well in the application of Hybrid and Electric Vehicle Motors (HEV/EV). In this comparison, ICE has a lower efficiency when compared to electric motors, wasting much of the potential energy of the fuel in form of heat and noise. On the other hand, the electric vehicles face limitation in autonomy and recharge time, demanding for a more efficient use of energy stored in batteries. This study aims to present emerging technologies for reuse of energy within the automotive context, originally known as “Energy Harvesting” and “Renewable Energies”.
Technical Paper

Resistance Welding for Automotive Wiring Harness Connection - Small Gauge Cables

2012-10-02
2012-36-0153
Miniaturization is an important trend in many technology segments, once it can enable innovative applications generating new markets. This trend was begun in electronics industry after World War II and has spawned changes into automotive sector also. For Automotive Wiring Harness, miniaturization is clearly presented in most of the components, mainly because of its benefits like the potential of mass reduction, cost reduction and efficiency improvement. Furthermore the main voice of customer points to cable gauge reduction that represents a considerable challenge for connection manufacturing process due to quality control limitations presented by conventional crimp process for 0,35 [mm₂] cables and smaller. According to that, the scope of this article is to present, in details, a manufacturing process optimization for an alternative and more robust technology of joining copper stranded cables to tin brass terminals used on automotive wiring harness, Resistance Welding.
Journal Article

HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-Based VVA Engine: The Low Load Limit

2012-04-16
2012-01-1134
While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single-cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000 rpm.
Technical Paper

Development of an Analytical Tool for Multilayer Stack Assemblies

2011-10-06
2011-28-0083
The development of an analytical model for multilayer stack subjected to temperature change is demonstrated here. Thin continuous layers of materials bonded together deform as a plate due to their differing coefficients of thermal expansion upon subjecting the bonded materials to the change in temperature. Applications of such structures can be found in the electronics industry (the study of warpage issues in printed circuit boards) or in the aerospace industry as (the study of laminated thin sheets used as skin structures for load bearing members such as wings and fuselage). In automotive electronics, critical high-power packages (IGBT, Power FETs) include several layers of widely differing materials (aluminum, solder, copper, ceramics) subjected to wide temperature cyclic ranges. Modeling of such structures by using three-dimensional finite element methods is usually time consuming and may not exactly predict the inter-laminar strains.
Technical Paper

Engine Efficiency Improvements Enabled by Ethanol Fuel Blends in a GDi VVA Flex Fuel Engine

2011-04-12
2011-01-0900
Advances in engine technology including Gasoline Direct injection (GDi), Dual Independent Cam Phasing (DICP), advanced valvetrain and boosting have allowed the simultaneous reductions of fuel consumption and emissions with increased engine power density. The utilization of fuels containing ethanol provides additional improvements in power density and potential for lower emissions due to the high octane rating and evaporative cooling of ethanol in the fuel. In this paper results are presented from a flexible fuel engine capable of operating with blends from E0-E85. The increased geometric compression ratio, (from 9.2 to 11.85) can be reduced to a lower effective compression ratio using advanced valvetrain operating on an Early Intake Valve Closing (EIVC) or Late Intake Valve Closing (LIVC) strategy. DICP with a high authority intake phaser is used to enable compression ratio management.
Technical Paper

High Frequency Ignition System for Gasoline Direct Injection Engines

2011-04-12
2011-01-1223
A high-frequency electrical resonance-based ignition concept is in development to replace conventional spark ignition functionality for gasoline engines employing various types of fuel injection methods. The concept provides the benefit of a continuous discharge phase and the electrical power of the discharge can also be adjusted to the needs of the combustion conditions. This concept employs an alternative method of generating high voltages, using inductors and capacitors trimmed such that the supplied energy steadily increases the output voltage. This configuration is widely known as Tesla transformer and has been engineered to operate in a modern gasoline engine combustion environment. This development allows very high break down voltages to be generated and the power into the spark itself can be influenced.
Technical Paper

Charge Motion Benefits of Valve Deactivation to Reduce Fuel Consumption and Emissions in a GDi, VVA Engine

2011-04-12
2011-01-1221
Requirements for reduced fuel consumption with simultaneous reductions in regulated emissions require more efficient operation of Spark Ignited (SI) engines. An advanced valvetrain coupled with Gasoline Direct injection (GDi) provide an opportunity to simultaneously reduce fuel consumption and emissions. Work on a flex fuel GDi engine has identified significant potential to reduce throttling by using Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC) strategies to control knock and load. High loads were problematic when operating on gasoline for particulate emissions, and low loads were not able to fully minimize throttling due to poor charge motion for the EIVC strategy. The use of valve deactivation was successful at reducing high load particulate emissions without a significant airflow penalty below 3000 RPM. Valve deactivation did increase the knocking tendency for knock limited fuels, due to increased heat transfer that increased charge temperature.
Technical Paper

Automotive Miniaturization Trend: Challenges for Wiring Harness Manufacturing

2010-10-06
2010-36-0160
One of the most evident trends in automotive sector is miniaturization. It is related to considerable benefits due to the potential of mass reduction, cost reduction and efficiency improvement. It involves many different automobile components and most of them are facing challenges to achieve the targets defined by car makers and final consumers. Specifically for wiring harness, it seems to be many manufacturing and process challenges to be surpassed in order to fully perceive the benefits expected with miniaturization, internally and externally. So this article aims to present an overview of literature as well as reporting of experts on this issue mentioning some of the challenges that global automotive wiring harness manufacturers are facing. Subjects as assembly automation, terminal connection and small gauge cables are discussed in the article and also a general overview of how those problems are being addressed in order to meet customer requirements.
Journal Article

Ignition Systems for Spray-Guided Stratified Combustion

2010-04-12
2010-01-0598
The success of stratified combustion is strongly determined by the injection and ignition system used. A large temporal and spatial variation of the main parameters - mixture composition and charge motion - in the vicinity of the spark location are driving the demands for significantly improved ignition systems. Besides the requirements for conventional homogeneous combustion systems higher ignition energy and breakdown voltage capability is needed. The spark location or spark plug gap itself has to be open and well accessible for the mixture to allow a successful flame kernel formation and growth into the stratified mixture regime, while being insensitive to potential interaction with liquid fuel droplets or even fuel film. For this purpose several different ignition concepts are currently being developed. The present article will give an ignition system overview for stratified combustion within Delphi Powertrain Systems.
Journal Article

A Simulation Method to Guide DISI Engine Redesign for Increased Efficiency using Alcohol Fuel Blends

2010-04-12
2010-01-1203
A turbocharged 2.0L 4-cylinder direct injection spark ignition (DISI) engine designed for use with gasoline is simulated using one dimensional engine simulation. Engine design modifications - increased compression ratio, 2-step valve train with dual independent cam phasing and fuel injection timing - are considered in an effort to improve fuel economy with gasoline and take advantage of properties of ethanol fuel blends (up to E85). This paper discusses a methodology to use the simulation to quantitatively evaluate the design modification effects on fuel economy. Fuel consumption predictions from the simulation for each design are evaluated. The goal is to identify the best design with the constraints of hardware physical limitations, engine residual tolerance and knock tolerance. The result yields a specification for a 2-step valve train design and phasing requirements that can improve fuel economy for each compression ratio design.
Journal Article

3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Low CO2 and NOx Emissions

2010-04-12
2010-01-0590
Today turbo-diesel powertrains offering low fuel consumption and good low-end torque comprise a significant fraction of the light-duty vehicle market in Europe. Global CO₂ regulation and customer fuel prices are expected to continue providing pressure for powertrain fuel efficiency. However, regulated emissions for NO and particulate matter have the potential to further expand the incremental cost of diesel powertrain applications. Vehicle segments with the most cost sensitivity like compacts under 1400 kg weight look for alternatives to meet the CO₂ challenge but maintain an attractive customer offering. In this paper the concepts of downsizing and downspeeding gasoline engines are explored while meeting performance needs through increased BMEP to maintain good driveability and vehicle launch dynamics. A critical enabler for the solution is adoption of gasoline direct injection (GDi) fuel systems.
Journal Article

Sensor- Less Individual Cylinder Pressure Estimation and Closed Loop Control for Cold Start and Torque Balancing

2010-04-12
2010-01-1269
The current paper presents a by cylinder IMEP estimator which operates completely free of direct cylinder pressure sensor measurement and which, when coupled with associated closed loop torque controller and commonly used engine control hardware, can provide significant improvement in the reduction to fuel sensitivity over conventional systems at minimal or no cost. Applications of the by cylinder estimator and closed loop torque/IMEP control are described including the use of the estimator during cold start before the O2 sensor is active. The application of the IMEP estimator and controller to cold start can provide significantly improved idle quality as well as enhanced robustness to degraded fuel quality. Closed loop combustion strategies using spark and fuel are described and experimental data from V6 engine testing are presented for the estimator and available closed loop controllers.
Technical Paper

Investigation of Knock Limited Compression Ratio of Ethanol Gasoline Blends

2010-04-12
2010-01-0619
Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock-limited compression ratio of ethanol-gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single-cylinder direct-injection spark-ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT and other high-load conditions to determine the knock-limited compression ratio (CR) of ethanol fuel blends. The geometric CR is varied by changing pistons, producing CR from 9.2 to 12.87.
Technical Paper

Application of a General Planar Kinematics and Multi-Body Dynamics Simulation Tool to the Analysis of Variable Valve Actuation Systems

2010-04-12
2010-01-1193
The advantages of Variable Valve Actuation (VVA) in the aspects of improved engine performance, fuel economy and reduced emissions are well known in the industry. However, the design and optimization of such systems is complex and costly. The design process of VVA mechanisms can be greatly accelerated through the use of sophisticated simulation tools. Predictive numerical analysis of systems to address design issues and evaluate design changes can assure the required performance and durability. One notable requirement for the analysis and design of novel mechanically-actuated VVA systems is a general-purpose fast and easy-to-use planar mechanism kinematics analyzer with cam solution/design features, which can be applied to general mechanisms.
X