Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Morphological Characterization of Gasoline Soot-in-Oil: Development of Semi-Automated 2D-TEM and Comparison with Novel High-Throughput 3D-TEM

2019-09-09
2019-24-0042
Characterization of soot nanoparticle morphology can be used to develop understanding of nanoparticle interaction with engine lubricant oil and its additives. It can be used to help direct modelling of soot-induced thickening, and in a more general sense for combatting reductions in engine efficiency that occur with soot-laden oils. Traditional 2D transmission electron microscopy (TEM) characterization possesses several important shortcomings related to accuracy that have prompted development of an alternative 3D characterization technique utilizing electron tomography, known as 3D-TEM. This work details progress made towards facilitating semi-automated image acquisition and processing for location of structures of interest on the TEM grid. Samples were taken from a four cylinder 1.4 L gasoline turbocharged direct injection (GTDI) engine operated in typically extra-urban driving conditions for 20,284 km, with automatic cylinder deactivation enabled.
Technical Paper

Soot in the Lubricating Oil: An Overlooked Concern for the Gasoline Direct Injection Engine?

2019-04-02
2019-01-0301
Formation of soot is a known phenomenon for diesel engines, however, only recently emerged for gasoline engines with the introduction of direct injection systems. Soot-in-oil samples from a three-cylinder turbocharged gasoline direct injection (GDI) engine have been analysed. The samples were collected from the oil sump after periods of use in predominantly urban driving conditions with start-stop mode activated. Thermogravimetric analysis (TGA) was performed to measure the soot content in the drained oils. Soot deposition rates were similar to previously reported rates for diesel engines, i.e. 1 wt% per 15,000 km, thus indicating a similar importance. Morphology was assessed by transmission electron microscopy (TEM). Images showed fractal agglomerates comprising multiple primary particles with characteristic core-shell nanostructure. Furthermore, large amorphous structures were observed. Primary particle sizes ranged from 12 to 55 nm, with a mean diameter of 30 nm and mode at 31 nm.
Technical Paper

Assessing the Accuracy of Soot Nanoparticle Morphology Measurements Using Three-Dimensional Electron Tomography

2019-04-02
2019-01-1188
Morphology plays an important role in determining behaviour and impact of soot nanoparticles, including effect on human health, atmospheric optical properties, contribution to engine wear, and role in marine ecology. However, its nanoscopic size has limited the ability to directly measure useful morphological parameters such as surface area and effective volume. Recently, 3D morphology characterization of soot nanoparticles via electron tomography has been the subject of several introductory studies. So-called ‘3D-TEM’ has been posited as an improvement over traditional 2D-TEM characterization due to the elimination of the error-inducing information gap that exists between 3-dimensional soot structures and 2-dimensional TEM projections. Little follow-up work has been performed due to difficulties with developing methodologies into robust high-throughput techniques.
X