Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Auto-Generation of Calibration Guides from MATLAB® Simulink®

2019-03-19
2019-01-1332
With the inception of model-based design and automatic code generation, many organizations are developing controls and diagnostics algorithms in model-based development tools to meet customer and regulatory requirements. Advances in model-based design have made it easier to generate C code from models and help software engineers streamline their workflow. Typically, after the software has been developed, the models are handed over to a calibration team responsible for calibrating the features to meet specified customer and regulatory requirements. However, once the models are handed over to the calibration team, the calibration engineers are unaware of how to calibrate the features because documentation is not available. Typically, model documentation trails behind the software process because it is created manually, most of this time is spent on formatting. As a result, lack of model documentation or up-to date documentation causes a lot of pain for OEM’s and Tier 1 suppliers.
Technical Paper

An Experimental Study on Engine Dynamics Model Based In-Cylinder Pressure Estimation

2012-04-16
2012-01-0896
The information provided by the in-cylinder pressure signal is of great importance for modern engine management systems. The obtained information is implemented to improve the control and diagnostics of the combustion process in order to meet the stringent emission regulations and to improve vehicle reliability and drivability. The work presented in this paper covers the experimental study and proposes a comprehensive and practical solution for the estimation of the in-cylinder pressure from the crankshaft speed fluctuation. Also, the paper emphasizes the feasibility and practicality aspects of the estimation techniques, for the real-time online application. In this study an engine dynamics model based estimation method is proposed. A discrete-time transformed form of a rigid-body crankshaft dynamics model is constructed based on the kinetic energy theorem, as the basis expression for total torque estimation.
Technical Paper

Closed Loop Pressure Control System Requirements and Implementation

2011-04-12
2011-01-0391
Electro-hydraulic actuation has been used widely in automatic transmission designs. With greater demand for premium shift quality of automatic transmissions, higher pressure control accuracy of the transmission electro-hydraulic control system has become one of the main factors for meeting this growing demand. This demand has been the driving force for the development of closed loop pressure controls technology. This paper presents the further research done based upon a previously developed closed loop system. The focus for this research is on the system requirements, such as solenoid driver selection and system latency handling. Both spin-stand and test vehicle setups are discussed in detail. Test results for various configurations are given.
Journal Article

Gasoline Direct Injection Compression Ignition (GDCI) - Diesel-like Efficiency with Low CO2 Emissions

2011-04-12
2011-01-1386
A single-cylinder engine was used to study the potential of a high-efficiency combustion concept called gasoline direct-injection compression-ignition (GDCI). Low temperature combustion was achieved using multiple injections, intake boost, and moderate EGR to reduce engine-out NOx and PM emissions engine for stringent emissions standards. This combustion strategy benefits from the relatively long ignition delay and high volatility of regular unleaded gasoline fuel. Tests were conducted at 6 bar IMEP - 1500 rpm using various injection strategies with low-to-moderate injection pressure. Results showed that triple injection GDCI achieved about 8 percent greater indicated thermal efficiency and about 14 percent lower specific CO2 emissions relative to diesel baseline tests on the same engine. Heat release rates and combustion noise could be controlled with a multiple-late injection strategy for controlled fuel-air stratification. Estimated heat losses were significantly reduced.
Journal Article

Analysis of Pre-Crash Data Transferred over the Serial Data Bus and Utilized by the SDM-DS Module

2011-04-12
2011-01-0809
The primary function of an airbag control module is to detect crashes, discriminate and predict if a deployment is necessary, then deploy the restraint systems including airbags and where applicable, pretensioners. At General Motors (GM), the internal term for airbag control module is Sensing and Diagnostic Module (SDM). In the 1994 model year, GM introduced its SDM on some of its North American airbag-equipped vehicles. A secondary function of that SDM and all subsequent SDMs is to record crash related data. This data can include data regarding impact severity from internal accelerometers and pre-crash vehicle data from various chassis and powertrain modules. Previous researchers have addressed the accuracy of both the velocity change data, recorded by the SDM, and the pre-crash data, but the assessment of the timing of the pre-crash data has been limited to a single family of modules (Delphi SDM-G).
Journal Article

Effects of Fuel Type on Dual SCR Aftertreatment for Lean NOx Reduction

2009-11-02
2009-01-2818
Global demand for alternative fuels to combat rising energy costs has sparked a renewed interest in catalysts that can effectively remediate NOx emissions resulting from combustion of a range of HC based fuels. Because many of these new engine technologies rely on lean operating environments to produce efficient power, the resulting emissions are also present in a lean atmosphere. While HCs are easily controlled in such environments, achieving high NOx conversion to N2 has continued to elude fully satisfactory solution. Until recently, most approaches have relied on catalysts with precious metals to either store NOx and subsequently release it as N2 under rich conditions, or use NH3 SCR catalysts with urea injection to reduce NOx under lean conditions. However, new improvements in Ag based technologies also look very promising for NOx reduction in lean environments.
Technical Paper

Impact of Biodiesel Emission Products from a Multi-Cylinder Direct Injection Diesel Engine on Particulate Filter Performance

2009-04-20
2009-01-1184
As diesel emission regulations continue to increase, the use of exhaust aftertreatment systems containing, for example the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) will become necessary in order to meet these stringent emission requirements. The addition of a DOC and DPF in conjunction with utilizing biodiesel fuels requires extensive research to study the implications that biodiesel blends have on emissions as well as to examine the effect on aftertreatment devices. The proceeding work discusses results from a 2006 VM Motori four-cylinder 2.8L direct injection diesel engine coupled with a diesel oxidation catalyst and catalyzed diesel particulate filter. Tests were done using ultra low sulfur diesel fuel blended with 20% choice white grease biodiesel fuel to evaluate the effects of biodiesel emission products on the performance and effectiveness of the aftertreatment devices and the effect of low temperature combustion modes.
Technical Paper

A Review of Solid Materials as Alternative Ammonia Sources for Lean NOx Reduction with SCR

2009-04-20
2009-01-0907
The need for improved emissions control in lean exhaust to meet tightening, world-wide NOx emissions standards has led to the development of selective catalytic reduction of NOx with ammonia as a major technology for emissions control. Current systems are being designed to use a solution of urea (32.5 wt %) dissolved in water or Diesel Exhaust Fluid (DEF) as the ammonia source. While DEF or AdBlue® is widely used as a source of ammonia, it has a number of issues at low temperatures, including freezing below −12 °C, solid deposit formation in the exhaust, and difficulties in dosing at exhaust temperatures below 200 °C. Additionally creating a uniform ammonia concentration can be problematic, complicating exhaust packaging and usually requiring a discrete mixer.
Technical Paper

Improving Time-To-Collision Estimation by IMM Based Kalman Filter

2009-04-20
2009-01-0162
In a CAS system, the distance and relative velocity between front and host vehicles are estimated to calculate time-to-collision (TTC). The distance estimates by different methods will certainly include noise which should be removed to ensure the accuracy of TTC calculations. Kalman filter is a good tool to filter such type of noise. Nevertheless, Kalman filter is a model based filter, which means a correct model is important to get the good filtering results. Usually, a vehicle is either moving with a constant velocity (CV) or constant acceleration (CA) maneuvers. This means the distance data between front and host vehicles can be described by either constant velocity or constant acceleration model. In this paper, first, CV and CA models are used to design two Kalman filters and an interacting multiple model (IMM) is used to dynamically combine the outputs from two filters.
Technical Paper

A Closed-Loop Drive-train Model for HIL Test Bench

2009-04-20
2009-01-1139
This paper presents a hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software, with a focus on a closed-loop vehicle drive-train model incorporating a detailed automatic transmission plant dynamics model developed for certain applications. Specifically, this paper presents the closed-loop integration of a 6-speed automatic transmission model developed for our HIL transmission controller and algorithm test bench (Opal-RT TestDrive based). The model validation, integration and its application in an HIL test environment are described in details.
Technical Paper

Closed Loop Pressure Control System Development for an Automatic Transmission

2009-04-20
2009-01-0951
This paper presents the development of a transmission closed loop pressure control system. The objective of this system is to improve transmission pressure control accuracy by employing closed-loop technology. The control system design includes both feed forward and feedback control. The feed forward control algorithm continuously learns solenoid P-I characteristics. The closed loop feedback control has a conventional PID control with multi-level gain selections for each control channel, as well as different operating points. To further improve the system performance, Robust Optimization is carried out to determine the optimal set of control parameters and controller hardware design factors. The optimized design is verified via an L18 experiment on spin dynamometer. The design is also tested on vehicle.
Technical Paper

Spray Pattern Recognition for Multi-Hole Gasoline Direct Injectors Using CFD Modeling

2009-04-20
2009-01-1488
This paper describes a correlation study on fuel spray pattern recognition of multi-hole injectors for gasoline direct injection (GDi) engines. Spray pattern is characterized by patternation length, which represents the distance of maximum droplet concentration from the axis of the injector. Five fuel injectors with different numbers and sizes of nozzle holes were considered in this study. Experimental data and CFD modeling results were used separately to develop regression models for spray patternation. These regressions predicted the influence of a number of injector operating and design parameters, including injection system operating pressure, valve lift, injector hole length-to-diameter ratio (L/d) and the orientation of the injector hole. The regression correlations provided a good fit with both experimental and CFD spray simulation results. Thus CFD offers a good complement to experimental validation during development efforts to meet a desired injector spray pattern.
Technical Paper

An Analytical and Experimental Study of a High Pressure Single Piston Pump for Gasoline Direct Injection (GDi) Engine Applications

2009-04-20
2009-01-1504
In recent years, gasoline direct injection (GDi) engines have been popular due to their inherent potential for reduction of exhaust emissions and fuel consumption to meet stringent EPA standards. These engines require high-pressure fuel injection in order to improve the atomization process and accelerate mixture preparation. The high-pressure fuel pump is an essential component in the GDi system. Therefore, understanding the flow characteristics of this device and its associated behavior is critical for improving the performance of this category of engines. In this paper, the fluid flow characteristics in a high-pressure single-piston pump for use in GDi engines are analyzed using 1-D LMS Imagine.Lab AMESim system and 3-D Ansys Fluent computational fluid dynamics (CFD) models. The flow rate of the fuel pump under various cam speeds has been examined along with characteristics of the pump's control valve.
Journal Article

Dual SCR Aftertreatment for Lean NOx Reduction

2009-04-20
2009-01-0277
Low-cost lean NOx aftertreatment is one of the main challenges facing high-efficiency gasoline and diesel engines operating with lean mixtures. While there are many candidate technologies, they all offer tradeoffs. We have investigated a multi-component Dual SCR aftertreatment system that is capable of obtaining NOx reduction efficiencies of greater than 90% under lean conditions, without the use of precious metals or urea injection into the exhaust. The Dual SCR approach here uses an Ag HC-SCR catalyst followed by an NH3-SCR catalyst. In bench reactor studies from 150 °C to 500 °C, we have found, for modest C/N ratios, that NOx reacts over the first catalyst to predominantly form nitrogen. In addition, it also forms ammonia in sufficient quantities to react on the second NH3-SCR catalyst to improve system performance. The operational window and the formation of NH3 are improved in the presence of small quantities of hydrogen (0.1–1.0%).
Journal Article

Fuel Efficiency Improvements from Lean, Stratified Combustion with a Solenoid Injector

2009-04-20
2009-01-1485
In light of the growing emphasis on CO2 emissions reduction, Delphi has undertaken an internal development program to show the fuel economy benefits of lean, stratified combustion with its outwardly-opening solenoid injector in a vehicle environment. This paper presents the status of this ongoing development activity which is not yet completed. Progress to date includes a logical progression from single- and multi-cylinder dynamometer engines to the vehicle environment. The solenoid-actuated injector used in this development has an outwardly-opening valve group to generate a hollow-cone spray with a stable, well-defined recirculation zone to support spray-guided stratification in the combustion chamber. The engine management system of the development vehicle was modified from series-production configuration by changing the engine control unit to permit function development and calibration.
Journal Article

Energy-Efficient Air Conditioning Systems Utilizing Pneumatic Variable Compressors

2009-04-20
2009-01-0539
Air Conditioning systems with reheat reduction based for energy efficiency have generally been implemented with either electronic variable compressors through active stroke control or with fixed displacement compressors through modifying the cycling set point. The present work demonstrates a unique concept of achieving energy efficiency via cycling a pneumatic variable compressor at elevated set points. The energy efficiency of such a system approaches that of an electronic variable but significantly higher than that of a fixed displacement compressor system. The cost of the system, on the other hand, is substantially lower than that of an electronic compressor. Secondary benefits include a softer start than with a fixed compressor and a considerably simpler control scheme than that required by an electronic variable compressor.
Technical Paper

A Strategy to Partition Crash Data to Define Active-Safety Sensors and Product Solutions

2008-10-20
2008-21-0032
Both Crash-Avoidance and Pre-Crash active safety technologies are being developed to help reduce the number of crashes and minimize the severity of crashes. The root basis in the development of new and improved active safety technologies always begins with gaining further knowledge about crash kinds and causes. The dynamics of crashes are quite complex. The evolving precursor crash situation initiated in the Crash-Avoidance time-period will vary from the imminent crash situation in the Pre-Crash time-period. As such, in order to develop the appropriate requirements for both crash-avoidance and pre-crash technologies, they must be analyzed from their respective crash data. A data-driven methodology process has been developed which partitions the field data with a perspective to crash-avoidance and pre-crash.
Technical Paper

Controller for Rapid Development of Advanced Mode Combustion Algorithms using Cylinder Pressure Feedback

2008-10-20
2008-21-0015
Worldwide regulatory demands to reduce emissions of greenhouse gases and other airborne pollutants are leading to significant changes in internal combustion engines. Many engine subsystems such as fuel injection, valvetrain, turbochargers and EGR, are being changed to address these demands. Additionally, advanced combustion modes such as HCCI are being pursued to address the key shortcomings of today's gasoline and diesel engines. Cylinder pressure based control is an enabling technology to the development and application of advanced engine subsystems and a key control element for advanced combustion modes. This paper describes a tool for rapid development of closed-loop cylinder pressure based algorithms. The Cylinder Pressure Development Controller (CPDC) is an affordable, automotive grade package containing a unique architecture enabling real-time, next engine cycle combustion feedback control.
Journal Article

Analysis of E-85 Fuel for Formic, Acetic, Propionic, Butyric, Glycolic and Citric Acids using Reversed Phase High Performance Liquid Chromatography

2008-10-06
2008-01-2509
An HPLC (High Performance Liquid Chromatography) method to measure the concentration of six organic acids in E-85 fuel has been developed. A three point calibration curve is established using standard solutions of the following organic acids: formic acid, acetic acid, propionic acid, butyric acid, glycolic acid and citric acid. An internal standard (maleic acid) is used to monitor HPLC system suitability and peak retention time stability. The method utilizes UV detection at 210 nm to detect and quantify the levels of each acid in E-85 fuel. Test results from nine commercially available E-85 fuel samples are reported. Analytical method validation was achieved by performing and confirming system suitability or injection repeatability (percent relative standard deviation ≤ 3%), calibration curve linearity (R2 ≥ 0.999), analysis repeatability (standard deviation < 1 mg/L) and recovery (percent recovery 91 - 102%).
Technical Paper

A Vehicle-to-Vehicle Communication Database for Infrastructureless Routing

2008-04-14
2008-01-1254
Traffic engineers use time-of-day travel time databases to characterize normal travel times on roads. This information is used by traffic management centers together with information from sensors in the highway to identify problems and to make alternate route recommendations. In this paper, the travel time database concept is extended to a vehicle-to-vehicle communications network for traffic and safety information, wherein the travel time database is generated and stored by vehicles in the network, and used by the vehicles to identify abnormal traffic conditions. This infrastructure-free approach is attractive due to the potential to eliminate highway sensor and sensor maintenance costs, which are major factors that limit the growth of traffic information beyond major roadways in urban regions. Initial work indicates that database storage requirements in the vehicle should be manageable.
X