Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Fuel Efficiency Improvements from Lean, Stratified Combustion with a Solenoid Injector

2009-04-20
2009-01-1485
In light of the growing emphasis on CO2 emissions reduction, Delphi has undertaken an internal development program to show the fuel economy benefits of lean, stratified combustion with its outwardly-opening solenoid injector in a vehicle environment. This paper presents the status of this ongoing development activity which is not yet completed. Progress to date includes a logical progression from single- and multi-cylinder dynamometer engines to the vehicle environment. The solenoid-actuated injector used in this development has an outwardly-opening valve group to generate a hollow-cone spray with a stable, well-defined recirculation zone to support spray-guided stratification in the combustion chamber. The engine management system of the development vehicle was modified from series-production configuration by changing the engine control unit to permit function development and calibration.
Technical Paper

Controlling Induction System Deposits in Flexible Fuel Vehicles Operating on E85

2007-10-29
2007-01-4071
With the wider use of biofuels in the marketplace, a program was conducted to study the deposit forming tendencies and performance of E85 (85% denatured ethanol and 15% gasoline) in a modern Flexible Fuel Vehicle (FFV). The test vehicle for this program was a 2006 General Motors Chevrolet Impala FFV equipped with a 3.5 liter V-6 powertrain. A series of 5,000 mile Chassis Dynamometer (CD) Intake Valve Deposits (IVD) and performance tests were conducted while operating the FFV on conventional (E0) regular unleaded gasoline and E85 to determine the deposit forming tendencies of both fuels. E85 test fuels were found to generate significantly higher levels of IVD than would have been predicted from the base gasoline component alone. The effects on the weight and composition of IVD due to a corrosion inhibitor and sulfates that were indigenous to one of the ethanols were also studied.
Technical Paper

Co-Simulation Analysis of Transient Response and Control for Engines with Variable Valvetrains

2007-04-16
2007-01-1283
Modern engines are becoming highly complex, with several strongly interactive subsystems - - variable cam phasers on both intake and exhaust, along with various kinds of variable valve lift mechanisms. Isolated component models may not yield adequate information to deal with system-level interactive issues, especially when it comes to transient behavior. In addition, massive amounts of expensive experimental work will be required for optimization. Recent computing speed improvements are beginning to permit the use of co-simulation to couple highly detailed and accurate submodels of the various engine components, each created using the most appropriate available simulation package. This paper describes such a system model using GT-Power to model the engine, AMESim to model cam phasers and the engine lubrication system, and Matlab/Simulink to model the engine controllers and the vehicle.
Technical Paper

2-step Variable Valve Actuation: System Optimization and Integration on an SI Engine

2006-04-03
2006-01-0040
2-step variable valve actuation using early-intake valve closing is a strategy for high fuel economy on spark-ignited gasoline engines. Two discrete valve-lift profiles are used with continuously variable cam phasing. 2-step VVA systems are attractive because of their low cost/benefit, relative simplicity, and ease-of-packaging on new and existing engines. A 2-step VVA system was designed and integrated on a 4-valve-per-cylinder 4.2L line-6 engine. Simulation tools were used to develop valve lift profiles for high fuel economy and low NOx emissions. The intake lift profiles had equal lift for both valves and were designed for high airflow & residual capacity in order to minimize valvetrain switching during the EPA drive cycle. It was determined that an enhanced combustion system was needed to maximize fuel economy benefit with the selected valve lift profiles. A flow-efficient chamber mask was developed to increase in-cylinder tumble motion and combustion rates.
Technical Paper

Design and Testing of a Prototype Midsize Parallel Hybrid-Electric Sport Utility

2004-10-25
2004-01-3062
The University of Wisconsin - Madison hybrid vehicle team has designed and constructed a four-wheel drive, charge sustaining, parallel hybrid-electric sport utility vehicle for entry into the FutureTruck 2003 competition. This is a multi-year project utilizing a 2002 4.0 liter Ford Explorer as the base vehicle. Wisconsin's FutureTruck, nicknamed the ‘Moolander’, weighs 2000 kg and includes a prototype aluminum frame. The Moolander uses a high efficiency, 1.8 liter, common rail, turbo-charged, compression ignition direct injection (CIDI) engine supplying 85 kW of peak power and an AC induction motor that provides an additional 60 kW of peak power. The 145 kW hybrid drivetrain will out-accelerate the stock V6 powertrain while producing similar emissions and drastically reducing fuel consumption. The PNGV Systems Analysis Toolkit (PSAT) model predicts a Federal Testing Procedure (FTP) combined driving cycle fuel economy of 16.05 km/L (37.8 mpg).
Technical Paper

Combustion Assisted Belt-Cranking of a V-8 Engine at 12-Volts

2004-03-08
2004-01-0569
Implementation of engine turnoff at idle is desirable to gain improvements in vehicle fuel economy. There are a number of alternatives for implementation of the restarting function, including the existing cranking motor, a 12V or 36V belt-starter, a crankshaft integrated-starter-generator (ISG), and other, more complex hybrid powertrain architectures. Of these options, the 12V belt-alternator-starter (BAS) offers strong potential for fast, quiet starting at a lower system cost and complexity than higher-power 36V alternatives. Two challenges are 1) the need to accelerate a large engine to idle speed quickly, and 2) dynamic torque control during the start for smoothness. In the absence of a higher power electrical machine to accomplish these tasks, combustion-assisted starting has been studied as a potential method of aiding a 12V accessory drive belt-alternator-starter in the starting process on larger engines.
Technical Paper

Evaluation of Power Devices for Automotive Hybrid and 42V Based Systems

2004-03-08
2004-01-1682
With the requirements for reducing the emissions and improving the fuel economy, the automotive companies are developing hybrid, 42 V and fuel cell vehicles. Power electronics is an enabling technology for the development of environmental friendly vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, the requirements of the power semiconductor devices and the criteria for selecting the power devices for various types of low emission vehicles are presented. A comparative study of the most commonly used power devices is presented. A brief review of the future power devices that would enhance the performance of the automotive power conversion systems is also presented.
Technical Paper

New On-Board Power Generation Technologies for Automotive Auxiliary Power Units

2003-06-23
2003-01-2256
Improving fuel economy, emissions, passenger comfort and convenience, safety, and vehicle performance in the automobile is resulting in the growth of electrical loads. In order to meet these electrical load demands and to meet the requirement of power generation when the engine is off, several technologies are on the horizon for on-board power generation in the vehicles. In this paper, new on-board power generation technologies based on the solid oxide fuel cell (SOFC), proton exchange membrane (PEM) fuel cell, thermo-photovoltaic (TPV) system, and diamond or carbon nanostructures are compared in terms power density, cost, and long term feasibility for automotive applications.
Technical Paper

Economic Analysis of Powertrain Control Technologies

2002-10-21
2002-21-0035
Regulatory and market pressures continue to challenge the automotive industry to develop technologies focused on reducing exhaust emissions and improving fuel economy. This paper introduces a practical model, which evaluates the economic value of various technologies based on their ability to reduce fuel consumption, improve emissions or provide consumer benefits such as improved performance. By evaluating the individual elements of economic value as viewed by the OEM manufacturer, while keeping the end consumer in mind, technology selection decisions can be made. These elements include annual fuel usage, vehicle performance, mass reduction and emissions, among others. The following technologies are discussed and evaluated: gasoline direct injection, variable valvetrain technologies, common-rail diesel and hybrid vehicles.
Technical Paper

Air Conditioning and Gas Guzzler Tax Credits

2002-06-03
2002-01-1958
Rising fuel prices at the pump has consumers taking a closer look at the actual fuel economy they get versus the general label values stated on the vehicle window sticker. The label values are calculated by applying fixed correction factors to the city and highway fuel economy test results. The purpose of the correction factors is to convert the results generated under laboratory conditions into values that can be expected by customers. Because of today's fuel economy labeling method, the differences between some new accessory drive component technologies are never reflected to the end consumer. For example, the air conditioning is not used during the fuel economy test. Instead it is lumped into this fixed correction factor. The purpose of this paper is to provide an overview of the magnitude of the air conditioning compressor load as compared to some other accessory drive loads and what causes these loads to vary.
X