Refine Your Search

Topic

Author

Search Results

Journal Article

A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

2013-04-08
2013-01-0850
Accurate evaluation of vehicles' transient total power requirement helps achieving further improvements in vehicle fuel efficiency. When operated, the air-conditioning (A/C) system is the largest auxiliary load on a vehicle, therefore accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation models, such as "Autonomie," have been used by OEMs to evaluate vehicles' energy performance. However, the load from the A/C system on the engine or on the energy storage system has not always been modeled in sufficient detail. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software MATLAB/Simulink® is frequently used by vehicle controls engineers to develop new and more efficient vehicle energy system controls.
Technical Paper

An Experimental Study on Engine Dynamics Model Based In-Cylinder Pressure Estimation

2012-04-16
2012-01-0896
The information provided by the in-cylinder pressure signal is of great importance for modern engine management systems. The obtained information is implemented to improve the control and diagnostics of the combustion process in order to meet the stringent emission regulations and to improve vehicle reliability and drivability. The work presented in this paper covers the experimental study and proposes a comprehensive and practical solution for the estimation of the in-cylinder pressure from the crankshaft speed fluctuation. Also, the paper emphasizes the feasibility and practicality aspects of the estimation techniques, for the real-time online application. In this study an engine dynamics model based estimation method is proposed. A discrete-time transformed form of a rigid-body crankshaft dynamics model is constructed based on the kinetic energy theorem, as the basis expression for total torque estimation.
Journal Article

Gasoline Direct Injection Compression Ignition (GDCI) - Diesel-like Efficiency with Low CO2 Emissions

2011-04-12
2011-01-1386
A single-cylinder engine was used to study the potential of a high-efficiency combustion concept called gasoline direct-injection compression-ignition (GDCI). Low temperature combustion was achieved using multiple injections, intake boost, and moderate EGR to reduce engine-out NOx and PM emissions engine for stringent emissions standards. This combustion strategy benefits from the relatively long ignition delay and high volatility of regular unleaded gasoline fuel. Tests were conducted at 6 bar IMEP - 1500 rpm using various injection strategies with low-to-moderate injection pressure. Results showed that triple injection GDCI achieved about 8 percent greater indicated thermal efficiency and about 14 percent lower specific CO2 emissions relative to diesel baseline tests on the same engine. Heat release rates and combustion noise could be controlled with a multiple-late injection strategy for controlled fuel-air stratification. Estimated heat losses were significantly reduced.
Journal Article

Effects of Fuel Type on Dual SCR Aftertreatment for Lean NOx Reduction

2009-11-02
2009-01-2818
Global demand for alternative fuels to combat rising energy costs has sparked a renewed interest in catalysts that can effectively remediate NOx emissions resulting from combustion of a range of HC based fuels. Because many of these new engine technologies rely on lean operating environments to produce efficient power, the resulting emissions are also present in a lean atmosphere. While HCs are easily controlled in such environments, achieving high NOx conversion to N2 has continued to elude fully satisfactory solution. Until recently, most approaches have relied on catalysts with precious metals to either store NOx and subsequently release it as N2 under rich conditions, or use NH3 SCR catalysts with urea injection to reduce NOx under lean conditions. However, new improvements in Ag based technologies also look very promising for NOx reduction in lean environments.
Technical Paper

A Review of Solid Materials as Alternative Ammonia Sources for Lean NOx Reduction with SCR

2009-04-20
2009-01-0907
The need for improved emissions control in lean exhaust to meet tightening, world-wide NOx emissions standards has led to the development of selective catalytic reduction of NOx with ammonia as a major technology for emissions control. Current systems are being designed to use a solution of urea (32.5 wt %) dissolved in water or Diesel Exhaust Fluid (DEF) as the ammonia source. While DEF or AdBlue® is widely used as a source of ammonia, it has a number of issues at low temperatures, including freezing below −12 °C, solid deposit formation in the exhaust, and difficulties in dosing at exhaust temperatures below 200 °C. Additionally creating a uniform ammonia concentration can be problematic, complicating exhaust packaging and usually requiring a discrete mixer.
Technical Paper

Humidity Effects on a Carbon Hydrocarbon Adsorber

2009-04-20
2009-01-0873
Because combustion engine equipped vehicles must conform to stringent hydrocarbon (HC) emission requirements, many of them on the road today are equipped with an engine air intake system that utilizes a hydrocarbon adsorber. Also known as HC traps, these devices capture environmentally dangerous gasoline vapors before they can enter the atmosphere. A majority of these adsorbers use activated carbon as it is cost effective and has excellent adsorption characteristics. Many of the procedures for evaluating the adsorbtive performance of these emissions devices use mass gain as the measurand. It is well known that activated carbon also has an affinity for water vapor; therefore it is useful to understand how well humidity must be controlled in a laboratory environment. This paper outlines investigations that were conducted to study how relative humidity levels affect an activated carbon hydrocarbon adsorber.
Journal Article

Dual SCR Aftertreatment for Lean NOx Reduction

2009-04-20
2009-01-0277
Low-cost lean NOx aftertreatment is one of the main challenges facing high-efficiency gasoline and diesel engines operating with lean mixtures. While there are many candidate technologies, they all offer tradeoffs. We have investigated a multi-component Dual SCR aftertreatment system that is capable of obtaining NOx reduction efficiencies of greater than 90% under lean conditions, without the use of precious metals or urea injection into the exhaust. The Dual SCR approach here uses an Ag HC-SCR catalyst followed by an NH3-SCR catalyst. In bench reactor studies from 150 °C to 500 °C, we have found, for modest C/N ratios, that NOx reacts over the first catalyst to predominantly form nitrogen. In addition, it also forms ammonia in sufficient quantities to react on the second NH3-SCR catalyst to improve system performance. The operational window and the formation of NH3 are improved in the presence of small quantities of hydrogen (0.1–1.0%).
Journal Article

Fuel Efficiency Improvements from Lean, Stratified Combustion with a Solenoid Injector

2009-04-20
2009-01-1485
In light of the growing emphasis on CO2 emissions reduction, Delphi has undertaken an internal development program to show the fuel economy benefits of lean, stratified combustion with its outwardly-opening solenoid injector in a vehicle environment. This paper presents the status of this ongoing development activity which is not yet completed. Progress to date includes a logical progression from single- and multi-cylinder dynamometer engines to the vehicle environment. The solenoid-actuated injector used in this development has an outwardly-opening valve group to generate a hollow-cone spray with a stable, well-defined recirculation zone to support spray-guided stratification in the combustion chamber. The engine management system of the development vehicle was modified from series-production configuration by changing the engine control unit to permit function development and calibration.
Technical Paper

Numerical Simulation of a Direct-Injection Spark-Ignition Engine with Different Fuels

2009-04-20
2009-01-0325
This paper focuses on the numerical investigation of the mixing and combustion of ethanol and gasoline in a single-cylinder 3-valve direct-injection spark-ignition engine. The numerical simulations are conducted with the KIVA code with global reaction models. However, an ignition delay model mitigates some of the deficiencies of the global one-step reaction model and is implemented via a two-dimensional look-up table, which was created using available detailed kinetics models. Simulations demonstrate the problems faced by ethanol operated engines and indicate that some of the strategies used for emission control and downsizing of gasoline engines can be employed for enhancing the combustion efficiency of ethanol operated engines.
Technical Paper

Controller for Rapid Development of Advanced Mode Combustion Algorithms using Cylinder Pressure Feedback

2008-10-20
2008-21-0015
Worldwide regulatory demands to reduce emissions of greenhouse gases and other airborne pollutants are leading to significant changes in internal combustion engines. Many engine subsystems such as fuel injection, valvetrain, turbochargers and EGR, are being changed to address these demands. Additionally, advanced combustion modes such as HCCI are being pursued to address the key shortcomings of today's gasoline and diesel engines. Cylinder pressure based control is an enabling technology to the development and application of advanced engine subsystems and a key control element for advanced combustion modes. This paper describes a tool for rapid development of closed-loop cylinder pressure based algorithms. The Cylinder Pressure Development Controller (CPDC) is an affordable, automotive grade package containing a unique architecture enabling real-time, next engine cycle combustion feedback control.
Technical Paper

Knock Detection for a Large Displacement Air-Cooled V-Twin Motorcycle Engine Using In-Cylinder Ionization Signals

2008-09-09
2008-32-0028
To obtain the maximum output power and fuel economy from an internal combustion engine, it is often necessary to detect engine knock and operate the engine at its knock limit. This paper presents the ability to detect knock using in-cylinder ionization signals on a large displacement, air-cooled, “V” twin motorcycle engine over the engine operational map. The knock detection ability of three different sensors is compared: production knock (accelerometer) sensor, in-cylinder pressure sensor, and ionization sensor. The test data shows that the ionization sensor is able to detect knock better than the production knock sensor when there is high mechanical noise present in the engine.
Technical Paper

A Scalable Engine Management System Architecture for Motorcycle/Small-Vehicle Application

2008-09-09
2008-32-0054
This paper gives an overview of a scalable engine management system architecture for motorcycle and other small engine based vehicle applications. The system can accommodate any engine sizes and up to four cylinders. The architecture incorporates advanced functionalities such as oxygen sensing, closed loop fueling, wall-wetting compensation, purge control, start & idle control and deceleration fuel cut-off. Additionally, a number of vehicle-related controls are integrated in the system. Diagnostic and safety related features have also been incorporated with limp-home capability. The software architecture is compatible with different hardware solutions. The system has been implemented in several OEM vehicles around the globe and meets EURO-3 emission requirements.
Technical Paper

Combustion Characteristics of a Single-Cylinder Engine Equipped with Gasoline and Ethanol Dual-Fuel Systems

2008-06-23
2008-01-1767
The requirement of reduced emissions and improved fuel economy led the introduction of direct-injection (DI) spark-ignited (SI) engines. Dual-fuel injection system (direct-injection and port-fuel-injection (PFI)) was also used to improve engine performance at high load and speed. Ethanol is one of the several alternative transportation fuels considered for replacing fossil fuels such as gasoline and diesel. Ethanol offers high octane quality but with lower energy density than fossil fuels. This paper presents the combustion characteristics of a single cylinder dual-fuel injection SI engine with the following fueling cases: a) gasoline for PFI and DI, b) PFI gasoline and DI ethanol, and c) PFI ethanol and DI gasoline. For this study, the DI fueling portion varied from 0 to 100 percentage of the total fueling over different engine operational conditions while the engine air-to-fuel ratio remained at a constant level.
Technical Paper

A Mean-Value Model for Estimating Exhaust Manifold Pressure in Production Engine Applications

2008-04-14
2008-01-1004
A key quantity for use in engine control is the exhaust manifold pressure. For production applications it is an important component in the calculation of the engine volumetric efficiency, as well as EGR flow and residual fraction. For cost reasons, however, it is preferable to not have to measure the exhaust manifold pressure for production applications. For that reason, it is advantageous to develop a model for estimating the exhaust manifold pressure in production application software that is small, accurate, and simple to calibrate. In this paper, a mean-value model for calculating the exhaust manifold pressure is derived from the compressible flow equation, treating the exhaust system as a fixed-geometry restriction between the exhaust manifold and the outlet of the tailpipe. Validation data from production applications is presented.
Technical Paper

Throttle Icing: Understanding the Icing Mechanism and Effects of Various Throttle Features

2008-04-14
2008-01-0439
Some Electronic Throttle Control (ETC) Air Control Valves (ACV) on automotive internal combustion engines are susceptible to icing of the throttle valve. Ice formation can result in an increase in torque required to open or close the valve. Laboratory studies were conducted to improve the understanding of throttle valve icing on electronic throttle control valves with both aluminum and composite (plastic) bodies over various bore sizes (4 cylinder to 8 cylinder engines). Study results indicated that ice compression at the bore and valve gap, not ice adhesion, is the major contributor to the ETC-ACV icing phenomenon. In addition, testing of parts with various bore sizes, orientations and surface cleanliness resulted in further understanding of the icing issue.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Technical Paper

Controlling Induction System Deposits in Flexible Fuel Vehicles Operating on E85

2007-10-29
2007-01-4071
With the wider use of biofuels in the marketplace, a program was conducted to study the deposit forming tendencies and performance of E85 (85% denatured ethanol and 15% gasoline) in a modern Flexible Fuel Vehicle (FFV). The test vehicle for this program was a 2006 General Motors Chevrolet Impala FFV equipped with a 3.5 liter V-6 powertrain. A series of 5,000 mile Chassis Dynamometer (CD) Intake Valve Deposits (IVD) and performance tests were conducted while operating the FFV on conventional (E0) regular unleaded gasoline and E85 to determine the deposit forming tendencies of both fuels. E85 test fuels were found to generate significantly higher levels of IVD than would have been predicted from the base gasoline component alone. The effects on the weight and composition of IVD due to a corrosion inhibitor and sulfates that were indigenous to one of the ethanols were also studied.
Technical Paper

Characterization of a Catalytic Converter Internal Flow

2007-10-29
2007-01-4024
This paper includes a numerical and experimental study of fluid flow in automotive catalytic converters. The numerical work involves using computational fluid dynamics (CFD) to perform three-dimensional calculations of turbulent flow in an inlet pipe, inlet cone, catalyst substrate (porous medium), outlet cone, and outlet pipe. The experimental work includes using hot-wire anemometry to measure the velocity profile at the outlet of the catalyst substrate, and pressure drop measurements across the system. Very often, the designer may have to resort to offset inlet and outlet cones, or angled inlet pipes due to space limitations. Hence, it is very difficult to achieve a good flow distribution at the inlet cross section of the catalyst substrate. Therefore, it is important to study the effect of the geometry of the catalytic converter on flow uniformity in the substrate.
Technical Paper

A High Speed Flow Visualization Study of Fuel Spray Pattern Effect on Mixture Formation in a Low Pressure Direct Injection Gasoline Engine

2007-04-16
2007-01-1411
In developing a direct injection gasoline engine, the in-cylinder fuel air mixing is key to good performance and emissions. High speed visualization in an optically accessible single cylinder engine for direct injection gasoline engine applications is an effective tool to reveal the fuel spray pattern effect on mixture formation The fuel injectors in this study employ the unique multi-hole turbulence nozzles in a PFI-like (Port Fuel Injection) fuel system architecture specifically developed as a Low Pressure Direct Injection (LPDI) fuel injection system. In this study, three injector sprays with a narrow 40° spray angle, a 60°spray angle with 5°offset angle, and a wide 80° spray angle with 10° offset angle were evaluated. Image processing algorithms were developed to analyze the nature of in-cylinder fuel-air mixing and the extent of fuel spray impingement on the cylinder wall.
Technical Paper

Design Considerations & Characterization Test Methods for Activated Carbon Foam Hydrocarbon Traps in Automotive Air Induction Systems

2007-04-16
2007-01-1429
As OEMs race to build their sales fleets to meet ever more stringent California Air Resources Board (CARB) mobile source evaporative emissions requirements, new technologies are emerging to control pollution. Evaporative emissions emanating from sources up-stream in the induction flow and venting through the ducts of the engine air induction system (EIS) need to be controlled in order classify a salable vehicle as a Partial Zero Emissions Vehicle (PZEV) in the state of California. As other states explore adopting California's pollution control standards, demand for emissions control measures in the induction system is expected to increase. This paper documents some of the considerations of designing an adsorbent evaporative emissions device in to a 2007 production passenger car for the North American and Asian markets. This new evaporative emissions device will be permanently installed in the vehicle's air cleaner cover without requiring service for 150K miles (expected vehicle life).
X