Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of Initial Fuel Temperature on Spray Characteristics of Multicomponent Fuel

2020-09-15
2020-01-2113
Fuel design concept has been proposed for low emission and combustion control in engine systems. In this concept, the multicomponent fuels, which are mixed with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components), are used for artificial control of fuel properties. In addition, these multicomponent fuels can easily lead to flash boiling which promote atomization and vaporization in the spray process. In order to understand atomization and vaporization process of multicomponent fuels in detail, the model for flash boiling spray of multicomponent fuel have been constructed and implemented into KIVA3V rel.2. This model considers the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets.
Technical Paper

Effects of Spray Internal EGR Using CO2 Gas Dissolved Fuel on Combustion Characteristics and Emissions in Diesel Engine

2020-01-24
2019-32-0592
We have proposed the application of Exhaust Gas Recirculation (EGR) gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. Since EGR gas is included in the spray of EGR gas dissolved fuel, it directly contributes to combustion, and the further reduction of NOx emissions is expected rather than the conventional external EGR. In our research, since highly contained in the exhaust gas and highly soluble in the fuel, CO2 was selected as the dissolved gas to simulate EGR gas dissolved. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emission characteristics inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%, but NOx reduction does not have enough effect.
Technical Paper

The Experimental Investigation of the Performance and Emissions Characteristics of Direct Injection Diesel Engine by Bio-Hydro Fined Diesel Oil and Diesel Oil in Different EGR

2020-01-24
2019-32-0595
Bio-hydro fined diesel (BHD) oil is known as a second generation oil made from bio hydro finning process. Biodiesel in the first generation is made from transesterification process and it has several disadvantages such as high density and increased the viscosity that can cause operational problems because can make some deposits in the engine. To overcome this, the second generation process of biodiesel has been modified from the first generation oil. BHD is made from the waste cooking oil by using the hydro finning process without the trans-esterification process. The results of BHD oil has nearly the same with diesel oil. BHD oil has low viscosity and high oxidation stability. Therefore, BHD oil can be used in the diesel engine without making any modifications in the engine. In this study, the comparison of performance and emissions characteristics from BHD oil, waste cooking oil, and diesel oil are investigated.
Technical Paper

Study for Higher Efficiency and Lower Emissions in Turbo Charged Small Gas Engine Using Low Caloric Biomass Model Gas

2020-01-24
2019-32-0620
In recent years, depletion of energy resources and increasing CO2 emission have been concerned. As this solution, the use of biofuels from garbage is focused. In this research, higher efficiency and lower emissions in the gas engine for power generation using biomass gas are aimed. However, the biomass gas is low caloric value and the output is low and the combustion is unstable. Therefore, a turbocharged spark ignition gas engine is used as the test institution. As a result, it is found that combustion stability and high efficiency of biomass gas can be realized.
Technical Paper

Improvement of Combustion Characteristics and Emissions by Applying CO2 Gas Dissolved Fuel in Diesel Engine

2019-12-19
2019-01-2274
We have proposed the application of EGR gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emissions inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%. The amount of NOx was reduced at IMEP=0.3 MPa, but it was increased at IMEP=0.9 MPa.
Technical Paper

Study on Multicomponent Fuel Spray with High Injection Pressure

2019-12-19
2019-01-2282
In previous study, the model for flash-boiling spray of multicomponent fuel was constructed and was implemented into KIVA code. This model considered the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets. These numerical results using this model were compared with experimental data which were obtained in the previous study using a constant volume vessel. The spray characteristics from numerical simulation qualitatively showed good agreement with the experimental results. Especially, it was confirmed from both the numerical and experimental data that flash-boiling effectively accelerated the atomization and vaporization of fuel droplets. However, in this previous study, injection pressure was very low (up to 15 MPa), and the spray characteristics of high pressure injection could not be analyzed.
Technical Paper

A Study on Higher Thermal Efficiency and Lower Cooling Loss in Diesel Engine

2019-12-19
2019-01-2283
The purpose of this study is to achieve thermal efficiency improvement and cooling loss reduction of a diesel engine with a combustion concept of earlier evaporation, higher entrainment, and compact spray flame. In order to realize this concept, the paper focused on two-component fuel (nC5H12/nC10H22) with high evaporation. In this paper, the effects of two-component fuel on thermal efficiency and exhaust characteristics are examined by using single cylinder diesel engine. In addition, spray characteristics are revealed in an optically accessible chamber and combustion characteristics are revealed by using RCEM.
Technical Paper

Investigation and Improvement of a Bouncing Torsional Vibration in Automotive Dual Mass Flywheel by Combining Testing and 1D CAE Modeling Approach

2019-06-05
2019-01-1556
Dual mass flywheel (DMF) is a well-known isolation system for vehicle drivetrain. DMF has two typical elastic energy storage systems: long travel arc springs and in-series spring units (including two or more springs) and sliding shoes connected in series. DMF has such complex nonlinear characteristics as torque-dependent torsional stiffness and rotational speed-dependent hysteresis friction due to its dependency of centrifugal force that is applied to components and radial force of springs. Because of this complexity, sub-harmonic vibration (SHV) may occur under certain circumstances, such as under light-load and high-rotational conditions. In general, since SHV’s frequency is 1/2 or 1/3 of the engine’s combustion frequency and may cause human discomfort, DMF must be designed robust against such nonlinear vibration. In this paper to reduce the SHV occurrence and to show a more robust design indicator, the SHV causing the mechanism is researched by testing and 1D CAE modeling.
Technical Paper

Improvement of Spray and Combustion Process by Applying CO2 Gas Dissolved Fuel

2017-11-05
2017-32-0046
The CO2 gas dissolved fuel for the diesel combustion is effective to reduce the NOx emissions to achieve the internal EGR (Exhaust Gas Recirculation) effect by fuel. This method has supplied EGR gas to the fuel side instead of supply EGR gas to the intake gas side. The fuel has followed specific characteristics for the diesel combustion. When the fuel is injected into the chamber in low pressure, this CO2 gas is separated from the fuel spray. The distribution characteristics of the spray are improved and the improvement of the thermal efficiency by reduction heat loss in the combustion chamber wall, and reduce soot emissions by the lean combustion is expected. Furthermore, this CO2 gas decreases the flame temperature. Further, it is anticipated to reduce NOx emissions by the spray internal EGR effect.
Technical Paper

Simultaneous Measurement of Fuel Droplet Deposition Amount and Oil Film Thickness on Spray Impingement Using Double Laser Induced Fluorescence Method

2017-10-08
2017-01-2371
Diesel Particulate filter (DPF) is installed as after treatment device of exhaust gas in diesel engine, and collects the Particulate Matter (PM). However, as the operation time of engine increases, PM is accumulated in the DPF, resulting in deterioration of PM collection efficiency and increasing in pressure loss. Therefore, Post injection has been attracted attention as DPF regeneration method for burning and removing PM in DPF. However, Post injection causes oil dilution when fuel is injected at the middle to late stage of expansion stroke. Oil dilution are concerned to deteriorate the sliding property of piston and the thermal efficiency. For this reason, it is necessary to elucidate the mechanism and the behavior that spray impinges lubricating oil film. Therefore, in this study, we aimed to construct model of Computational Fluid Dynamics (CFD) that predicts amount of oil dilution which is concern for post injection in diesel engine, with high accuracy.
Technical Paper

Vibration Analysis of Rotating Tires Focused on Effect of Rotation Using a Three - Dimensional Flexible Ring Model

2017-06-05
2017-01-1903
The tire is one of the most important parts, which influence the noise, vibration, and harshness of the passenger cars. It is well known that effect of rotation influences tire vibration characteristics, and earlier studies presented formulas of tire vibration behavior. However, there are no studies of tire vibration including lateral vibration on effect of rotation. In this paper, we present new formulas of tire vibration on effect of rotation using a three-dimensional flexible ring model. The model consists of the cylindrical ring represents the tread and the springs represent the sidewall stiffness. The equation of motion of lateral, longitudinal, and radial vibration on the tread are derived based on the assumption of inextensional deformation. Many of the associated numerical parameters are identified from experimental tests.
Technical Paper

Construction of Sound Source Model for Diesel Engine Using New Method for Selecting Optimal Field Points in Inverse-Numerical Acoustic Analysis

2017-06-05
2017-01-1871
This paper describes new method for selecting optimal field points in Inverse-Numerical Acoustic analysis (INA), and its application to construction of a sound source model for diesel engines. INA identifies the surface vibration of a sound source by using acoustic transfer functions and actual sound pressures measured at field points located near the sound source. When measuring sound pressures with INA, it is necessary to determine the field point arrangement. Increased field points leads to longer test and analysis time. Therefore, guidelines for selecting the field point arrangement are needed to conduct INA efficiently. The authors focused on the standard deviations of distance between sound source elements and field points and proposed a new guideline for optimal field point selection in our past study. In that study, we verified the effectiveness of this guideline using a simple plate model.
Technical Paper

Experimental Investigation of Superheated Fuel Spray Characteristics for D.I.S.I Engines

2017-03-28
2017-01-0820
The flash boiling by fuel heating is a useful method to control the time spatial spray characteristics such as atomization of droplets, vaporization and air-fuel mixture concentration. It is one of the important phenomena for a direct injection gasoline engine (D.I.S.I) as a next generation powertrain. This report focuses on flash boiling spray using fuel heating. The purpose of this study is to understand its physical phenomena with scattered light method, schlieren photography, and Super High Spatial Resolution Photography (SHSRP). Fuel is iso-octane and injectors are a single hole nozzle and a multi hole nozzle. These are used for the basic phenomenon analysis. The influence on spray shape can be shown by schlieren photography. Spray droplet diameter and spray dispersion at the nozzle exit are observed by super high spatial resolution photography that is our original development technique. This is the first time that this SHSRP is applied to the measurement of the heating spray.
Technical Paper

Reduction of Reaction Mechanism for n-Tridecane Based on Knowledge of Detailed Reaction Paths

2016-10-17
2016-01-2238
n-Tridecane is a low boiling point component of gas oil, and has been used as a single-component fuel for diesel spray and combustion experiments. However, no reduced chemical kinetic mechanisms for n-tridecane have been presented for three-dimensional modeling. A detailed mechanism developed by KUCRS (Knowledge-basing Utilities for Complex Reaction Systems), contains 1493 chemical species and 3641 reactions. Reaction paths during ignition process for n-tridecane in air computed using the detailed mechanism, were analyzed with the equivalence ratio of 0.75 and the initial temperatures of 650 K, 850 K, and 1100 K, which are located in the cool-flame dominant, negative-temperature coefficient, and blue-flame dominant regions, respectively.
Technical Paper

Application of Transfer Path Analysis (TPA) to a Mechanical Structure with a Variety of Transfer Paths

2016-09-27
2016-01-8101
In a typical mechanical product such as an automobile or construction machinery, it is important to identify deformation modes, for which experiments and analyses can result in significant improvements. It is also important to consider how to improve the structure with high rigidity by using a technique such as the strain energy method in conventional design and development. However, the abovementioned method often generates conflicting results with regard to weight saving and cost reduction of development requirements. Transfer path analysis (TPA) using the finite element method (FEM) is an effective way to reduce noise and vibration in the automobile with respect to these issues. TPA can reveal the transfer path from the input to the response of the output point and the contribution of the path, and to efficiently consider improved responses.
Technical Paper

Visualization of Cavitation Inside Nozzle Hole and Injected Liquid Jet

2015-09-01
2015-01-1908
The atomization structure of the fuel spray is known to be affected by flow conditions and cavitation inside the nozzle hole. In this paper, the cavitation phenomena inside the nozzle hole was visualized by using large-scale transparent nozzles, as well as the effect of length-to-width ratio (l/w ratio) of the nozzle hole on cavitation and on the behavior of injection liquid jet. In addition, various flow patterns inside the nozzle hole same as experimental conditions were simulated by the use of Cavitation model incorporated in Star-CCM+, which was compared with experimental results.
Technical Paper

Artificial Control of Diesel Spray and Flame Feature by using Dual-component Fuel

2015-09-01
2015-01-1916
Fuel design approach has been proposed as the control technique of spray and combustion processes in diesel engine to improve thermal efficiency and reduce exhaust emissions. In order to kwow if this approach is capable of controlling spray flame structure and interaction between the flame and a combustion chamber wall, the present study investigated ignition and flame characteristics of dual-component fuels, while varying mixing fraction, fuel temperature and ambient conditions. Those characteristics were evaluated through chemiluminescence photography and luminous flame photography. OH radical images and visible luminous flame images were analyzed to reveal flame shape aspect ratio and its fractal dimension.
Technical Paper

The Spray Feature of Direct Injection Gasoline Engine with Super High Spatial Resolution Photography

2015-09-01
2015-01-1892
In direct injection spark ignition (DISI), spray characteristics such as the penetration, spatial dispersion, droplet size distribution and the spray wall interaction process are extremely important to control the combustion process through the mixture formation process. Furthermore, the spray basic feature including the spatial and temporal changes is the key issue to reduce the Particulate Matter (PM) & HC emissions. In this study, we reveal both of the macroscopic and microscopic structures of the spray dynamics by Super High Spatial Resolution Photography (SHSRP). Furthermore, it is found that the simulated spray structure such as the penetration and droplet size distribution using Computational Fluid Dynamics (CFD) code is well consistent with the experimental results.
Technical Paper

Compressible Large-Eddy Simulation of Diesel Spray Structure using OpenFOAM

2015-09-01
2015-01-1858
The compressible Large-Eddy Simulation (LES) for the diesel spray with OpenFOAM is presented to reduce CPU time by massively parallel computing of the scalar type supercomputer (CRAY XE6) and simulate the development of the non-evaporative and the evaporative spray. The maximum computational speeds are 14 times (128 cores) and 43 times (128 cores) for of the non-evaporative spray and the spray flame with one-step reaction, respectively, compared to the one core simulation. In the spray flame simulation with the reduced reaction mechanism (29 species, 52 reactions), the maximum computational speed is 149 times (512 cores). Then LES of the non-evaporative and the evaporative spray (Spray A) are calculated. The results indicate that the spray tip penetration is well predicted, although the size of the computational domain must be set equal to that of the experiment.
Technical Paper

Identification of Sound Source Model Using Inverse-Numerical Acoustic Analysis and Noise Prediction for Engine Enclosure

2015-06-15
2015-01-2250
This paper describes the identification of a sound source model for diesel engines installed on agricultural machines by using Inverse-Numerical Acoustic (INA) analysis, and noise predictions using the sound source model identified by INA. INA is a method of identifying surface vibrations from surrounding sound pressures. This method can be applied to sound sources with complicated shapes like those in engines. Although many studies on INA have been conducted, these past studies have focused on improvements to the identified accuracy and prediction of noise in free sound field or hemi-free sound field. The authors accurately predicted the sound pressure levels of engine enclosures using a sound source model identified by INA and a boundary element method (BEM). However, we had not yet verified the effectiveness of this sound source model against enclosures that had sound absorbing materials and openings.
X