Refine Your Search



Search Results

Technical Paper

Effect of Initial Fuel Temperature on Spray Characteristics of Multicomponent Fuel

Fuel design concept has been proposed for low emission and combustion control in engine systems. In this concept, the multicomponent fuels, which are mixed with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components), are used for artificial control of fuel properties. In addition, these multicomponent fuels can easily lead to flash boiling which promote atomization and vaporization in the spray process. In order to understand atomization and vaporization process of multicomponent fuels in detail, the model for flash boiling spray of multicomponent fuel have been constructed and implemented into KIVA3V rel.2. This model considers the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets.
Technical Paper

Study for Higher Efficiency and Lower Emissions in Turbo Charged Small Gas Engine Using Low Caloric Biomass Model Gas

In recent years, depletion of energy resources and increasing CO2 emission have been concerned. As this solution, the use of biofuels from garbage is focused. In this research, higher efficiency and lower emissions in the gas engine for power generation using biomass gas are aimed. However, the biomass gas is low caloric value and the output is low and the combustion is unstable. Therefore, a turbocharged spark ignition gas engine is used as the test institution. As a result, it is found that combustion stability and high efficiency of biomass gas can be realized.
Technical Paper

Improvement of Combustion Characteristics and Emissions by Applying CO2 Gas Dissolved Fuel in Diesel Engine

We have proposed the application of EGR gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emissions inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%. The amount of NOx was reduced at IMEP=0.3 MPa, but it was increased at IMEP=0.9 MPa.
Technical Paper

Study on Multicomponent Fuel Spray with High Injection Pressure

In previous study, the model for flash-boiling spray of multicomponent fuel was constructed and was implemented into KIVA code. This model considered the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets. These numerical results using this model were compared with experimental data which were obtained in the previous study using a constant volume vessel. The spray characteristics from numerical simulation qualitatively showed good agreement with the experimental results. Especially, it was confirmed from both the numerical and experimental data that flash-boiling effectively accelerated the atomization and vaporization of fuel droplets. However, in this previous study, injection pressure was very low (up to 15 MPa), and the spray characteristics of high pressure injection could not be analyzed.
Technical Paper

A Study on Higher Thermal Efficiency and Lower Cooling Loss in Diesel Engine

The purpose of this study is to achieve thermal efficiency improvement and cooling loss reduction of a diesel engine with a combustion concept of earlier evaporation, higher entrainment, and compact spray flame. In order to realize this concept, the paper focused on two-component fuel (nC5H12/nC10H22) with high evaporation. In this paper, the effects of two-component fuel on thermal efficiency and exhaust characteristics are examined by using single cylinder diesel engine. In addition, spray characteristics are revealed in an optically accessible chamber and combustion characteristics are revealed by using RCEM.
Technical Paper

Construction of Sound Source Model for Diesel Engine Using New Method for Selecting Optimal Field Points in Inverse-Numerical Acoustic Analysis

This paper describes new method for selecting optimal field points in Inverse-Numerical Acoustic analysis (INA), and its application to construction of a sound source model for diesel engines. INA identifies the surface vibration of a sound source by using acoustic transfer functions and actual sound pressures measured at field points located near the sound source. When measuring sound pressures with INA, it is necessary to determine the field point arrangement. Increased field points leads to longer test and analysis time. Therefore, guidelines for selecting the field point arrangement are needed to conduct INA efficiently. The authors focused on the standard deviations of distance between sound source elements and field points and proposed a new guideline for optimal field point selection in our past study. In that study, we verified the effectiveness of this guideline using a simple plate model.
Technical Paper

Reduction of Reaction Mechanism for n-Tridecane Based on Knowledge of Detailed Reaction Paths

n-Tridecane is a low boiling point component of gas oil, and has been used as a single-component fuel for diesel spray and combustion experiments. However, no reduced chemical kinetic mechanisms for n-tridecane have been presented for three-dimensional modeling. A detailed mechanism developed by KUCRS (Knowledge-basing Utilities for Complex Reaction Systems), contains 1493 chemical species and 3641 reactions. Reaction paths during ignition process for n-tridecane in air computed using the detailed mechanism, were analyzed with the equivalence ratio of 0.75 and the initial temperatures of 650 K, 850 K, and 1100 K, which are located in the cool-flame dominant, negative-temperature coefficient, and blue-flame dominant regions, respectively.
Technical Paper

Artificial Control of Diesel Spray and Flame Feature by using Dual-component Fuel

Fuel design approach has been proposed as the control technique of spray and combustion processes in diesel engine to improve thermal efficiency and reduce exhaust emissions. In order to kwow if this approach is capable of controlling spray flame structure and interaction between the flame and a combustion chamber wall, the present study investigated ignition and flame characteristics of dual-component fuels, while varying mixing fraction, fuel temperature and ambient conditions. Those characteristics were evaluated through chemiluminescence photography and luminous flame photography. OH radical images and visible luminous flame images were analyzed to reveal flame shape aspect ratio and its fractal dimension.
Journal Article

Modeling of Auto-Ignition and Combustion Processes for Dual-Component Fuel Spray

Auto-ignition and combustion processes of dual-component fuel spray were numerically studied. A source code of SUPERTRAPP (developed by NIST), which is capable of predicting thermodynamic and transportation properties of pure fluids and fluid mixtures containing up to 20 components, was incorporated into KIVA3V to provide physical fuel properties and vapor-liquid equilibrium calculations. Low temperature oxidation reaction, which is of importance in ignition process of hydrocarbon fuels, as well as negative temperature coefficient behavior was taken into account using the multistep kinetics ignition prediction based on Shell model, while a global single-step mechanism was employed to account for high temperature oxidation reaction. Computational results with the present multi-component fuel model were validated by comparing with experimental data of spray combustion obtained in a constant volume vessel.
Technical Paper

Demonstrating the Potential of Mixture Distribution Control for Controlled Combustion and Emissions Reduction in Premixed Charge Compression Ignition Engines

The objective of this study is to explore the relation among mixture distribution condition, chemical character of fuel, combustion processes, and emissions characteristics with premixed charge compression ignition (PCCI) operation. The present experiment employs two fuel injectors which are capable of port injection and direct one. The former was used to supply a highly-homogeneous mixture and the latter with late injection timing was employed to control the mixture heterogeneity. Thus, these sets of injection equipments are capable of setting a wide variety of mixture heterogeneity. Furthermore, two primary reference fuels were used in order to know the influences of chemical character. The experiments were conducted in order to clarify the combustion and emissions characteristics through engine tests. Optical diagnostic was also performed to gain additional insight into the combustion processes for a wide variety of mixture distribution.
Technical Paper

Visualization of Micro Structure in a Diesel Spray by Use of Photography with High Spatial Resolution

It is very much necessary for researchers and engineers whose work is the field of combustion in a CI engine to find the information of droplets in a diesel spray. The information is strongly required to construct the model of spray built in the numerical code for its simulation and to be used for the verification of the accuracy of the calculation. This paper describes the photographing system with high spatial resolution, the distribution of droplet size and the vortex scale caused by the droplets motion by means of this system.
Technical Paper

Dynamic Characteristics of a Mount Combining Viscous Fluid With Air-Spring

A hydraulic excavator cab is mounted on a viscous mount. When the weight of the cab is heavy, the neutral position is depressed. Besides, at a large load, the cab receives compressive repulsion power of oil thereby restricting its damping ability. In addition, it is difficult to obtain an arbitrary damping performance separately. To overcome these problems, which combines the shear force due to viscous fluid with elastic force due to air-spring a mount, was invented. The neutral position of composite mount is adjustable by air-spring according to the weight. And viscous oil is not sealed up. So, viscous oil can flow at a large load. Therefore, it may not experience the repulsion force of oil in spite of a large load. Moreover, the generated elastic force is adjustable according to change of pressure in the air spring, and the generated damping force is adjustable according to change of viscous fluid's viscosity or volume.
Technical Paper

Large Eddy Simulation of Diesel Spray Combustion with Eddy-Dissipation Model and CIP Method by Use of KIVALES

Three-dimensional large eddy simulation (LES) has been conducted for a diesel spray flame using KIVALES which is LES version of KIVA code. Modified TAB model, velocity interpolation model and rigid sphere model are used to improve the prediction of the fuel-mixture process in the diesel spray. Combustion is simulated using the Eddy-Dissipation model. CIP method was incorporated into the KIVALES in order to suppress the numerical instability on the combustible flow. The formation of soot and NO was simulated using Hiroyasu model and KIVA original model. Three different grid resolutions were used to examine the grid dependency. The result shows that the LES approach with 0.5 mm grid size is able to resolve the instantaneous spray with the intermittency in the spray periphery, the axi-symmetric shape and meandering flow after the end of injection as shown in the experimental results.
Technical Paper

Study on Low Speed Judder of Wave Type Brake Discs for Motorcycles

This study discussed the mechanism of the low speed judder for wave type brake disc developed newly for recent motorcycles. Wavy disc was examined to investigate the effect of wave configurations on the BTV (Brake Torque Variation) behavior. Torque amplitude in braking was compared with respect to the revolution order which represented the multiple number of the number of revolutions. To explain the mechanism at the mode showing largest BTV, the elastic deformation of the pad was analyzed by finite element method concerning geometrical nonlinearity with commercial code. This study found that most crucial BTV appeared on low speed judder was observed at the 3 rd peaks on the revolution order. Test data showed that this crucial BTV was related with the number of waves at the disc periphery, and caused by the indentation of the pad into notched part at disc periphery.
Technical Paper

Characteristics of Intermediate Products Generated During Diesel Combustion by Means of Total Gas Sampling

It is very significant to take the intermediate products in diesel combustion for understanding the generation of exhaust emissions like SOF, dry soot and so on. The products generated in a constant volume combustion chamber were sampled by pricking a sheet of polyester film installed in the chamber to freeze the chemical reaction. The gas was analyzed by a gas chromatography. The fuel used was n-heptane. It is able to explain the generation of exhaust emissions by the experimental results. The other objective is to simulate the intermediate products. It is capable of explaining the relation between the simulated and experimental results.
Technical Paper

Exhaust Emission Through Diesel Combustion of Mixed Fuel Oil Composed of Fuel with High Volatility and that with Low Volatility

The mixed fuel composed of two kinds of fuel oil whose boiling temperature is different each other forms the fine spray with minute droplets when its condition crosses over the two-phase region. It is expected that the fuel with low volatility dominates the ignition delay and that with high volatility does the generation of particulate matter. The experiments were carried out in a rapid compression and expansion machine and in an actual high-speed small sized diesel engine by use of this kind of fuel. The experimental results prove this expectation.
Technical Paper

Detailed Kinetic Modeling and Laser Diagnostics of Soot Formation Process in Diesel Jet Flame

This work investigates the soot formation process in diesel jet flame using a detailed kinetic soot model implemented into the KIVA-3V multidimensional CFD code and 2D imaging by use of time-resolved laser induced incandescence (LII). The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver using Message Passing Interface (MPI). This allows for the chemical reactions to be simulated in parallel on multiple CPUs. The detailed soot model used is based on the method of moments, which begins with fuel pyrolysis, followed by the formation of polycyclic aromatic hydrocarbons, their growth and coagulation into spherical particles, and finally, surface growth and oxidation of the particles. The model can describe the spatial and temporal characteristics of soot formation processes such as soot precursors distributions, nucleation rate and surface reaction rate.
Technical Paper

Vaporization Characteristics and Liquid-Phase Penetration for Multi-Component Fuels

The maximum liquid-phase penetration and vaporization behavior was investigated by using simultaneous measurement for mie-scattered light images and shadowgraph ones. The objective of this study was to analyze effect of variant parameters (injection pressure, ambient gas condition and fuel temperature) and fuel properties on vaporization behavior, and to investigate liquid phase penetration for the single- and multi-component fuels. The experiments were conducted in a constant-volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector.
Technical Paper

Reduction of Heavy Duty Diesel Engine Emission and Fuel Economy with Multi-Objective Genetic Algorithm and Phenomenological Model

In this study, a system to perform a parameter search of heavy-duty diesel engines is proposed. Recently, it has become essential to use design methodologies including computer simulations for diesel engines that have small amounts of NOx and SOOT while maintaining reasonable fuel economy. For this purpose, multi-objective optimization techniques should be used. Multi-objective optimization problems have several types of objectives and they should be minimized or maximized at the same time. There is often a trade-off relationship between objects and derivation of the Pareto optimum solutions that express the relationship between the objects is one of the goals in this case. The proposed system consists of a multi-objective genetic algorithm (MOGA) and phenomenological model. MOGA has strong search capability for Pareto optimum solutions. However, MOGA requires a large number of iterations.
Technical Paper

Numerical Simulation of Multicomponent Fuel Spray

Fuel design for internal combustion engines has been proposed in our study. In this concept, the multicomponent fuel with high and low volatility fuels are used in order to control the spray and combustion processes in internal combustion engine. Therefore, it is necessary to understand the spray and combustion characteristics of the multicomponent fuels in detail. In the present study, the modeling of multicomponent spray vaporization was conducted using KIVA3V code. The physical fuel properties of multicomponent fuel were estimated using the source code of NIST Mixture Property Database. Peng-Robinson equation of state and fugacity calculation were applied to the estimation of liquid-vapor equilibrium in order to take account for non-ideal vaporization process. Two-zone model in which fuel droplet was divided into droplet surface and inner core was introduced in order to simply consider the temperature distribution in fuel droplet.