Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

PN-Emissions of Gasoline Cars MPI and Potentials of GPF

Further efforts to reduce the air pollution from traffic are undertaken worldwide and the filtration of exhaust gas will also be increasingly applied on gasoline cars (GPF1 … gasoline particle filter). In the present paper, some results of investigations of nanoparticles from four MPI gasoline cars are represented. The measurements were performed at vehicle tailpipe and in CVS-tunnel. Moreover, two variants of GPF were investigated on a high-emitting modern vehicle, including analytics of PAH and attempts of soot loading in road application. The modern MPI vehicles can emit a considerable amount of PN, which in some cases attains the level of Diesel exhaust gas without DPF and can pass over the actual European limit value for GDI (6.0 x 1011 #/km). The GPF-technology offers in this respect further poten-tials to reduce the PN-emissions of traffic.
Technical Paper

Nanoparticle Emissions of DI Gasoline Cars with/without GPF

In the present paper some results of investigations of nanoparticles from five DI gasoline cars are represented. The measurements were performed at vehicle tailpipe and in CVS-tunnel. Moreover, five variants of “vehicle - GPF” were investigated. These results originate from the project GasOMeP (Gasoline Organic & Metal Particulates), which focused on metal-nanoparticles (including sub 20nm) from gasoline cars with different engine technologies. The PN-emission level of the investigated GDI cars in WLTC without GPF is in the same range of magnitude very near to the actual limit value of 6.0 × 1012 #/km. With the GPF’s with better filtration quality, it is possible to lower the emissions below the future limit value of 6.0 × 1011 #/km. There is no visible nuclei mode and the ultrafine particle concentrations below 10mm are insignificant. Some of the vehicles show at constant speed operation a periodical fluctuation of the NP-emissions, as an effect of the electronic control.
Technical Paper

Experiences from Nanoparticle Research on Four Gasoline Cars

The invisible nanoparticles (NP)*) from combustion processes penetrate easily into the human body through the respiratory and olfactory pathways and carry numerous harmful health effects potentials. NP count concentrations are limited in EU for Diesel passenger cars since 2013 and for gasoline cars with direct injection (GDI) since 2014. The limit for GDI was temporary extended to 6 × 1012 #/km, (regulation No. 459/2012/EU). Nuclei of metals as well as organics are suspected to significantly contribute especially to the ultrafine particle size fractions, and thus to the particle number concentration. In the project GasOMeP (Gasoline Organic & Metal Particulates) metal-nanoparticles (including sub 20nm) from gasoline cars are investigated for different engine technologies. In the present paper some results of investigations of nanoparticles from four gasoline cars - an older one with MPI and three newer with DI - are represented.
Technical Paper

Diesel Emissions with DPF & SCR and Toxic Potentials with BioDiesel (RME) Blend Fuels

The use of alternative fuels and among them the biofuels of 1st generation - fatty acid methyl esters FAME's and pure plants oils - for propulsion of IC engines is an important objective in several countries in order to save the fossil fuels and to limit the CO₂ production. The properties of bio-fuels and bio-blend-fuels can vary and this has an impact on the operation and emissions of diesel engines and on the modern exhaust aftertreatment systems. The present paper represents the most important results obtained with RME at AFHB, EMPA and EC-JRC. Most of the activities were performed in the network project BioExDi (Biofuels, Exhaust Systems Diesel) in collaboration between industry and research institutes.
Technical Paper

DPF's Regeneration Procedures and Emissions with RME Blend Fuels

The fatty acid methyl esters (FAME's) - in Europe mostly RME (Rapeseed methyl ester) - are used in several countries as alternative biogene diesel fuels in various blending ratios with fossil fuels (Bxx). Questions often arise about the influences of these biocomponents on the modern exhaust aftertreatment systems and especially on the regeneration of diesel particle filters (DPF). In the present work different regeneration procedures of DPF systems were investigated with biofuels B0, B20 & B100. The tested regeneration procedures were: - passive regenerations: DOC + CSF; CSF alone, and - active regenerations: standstill burner; fuel injections & DOC. During each regeneration on-line measurements of regulated and unregulated emission components (nanoparticles & FTIR) were conducted. It can be stated that the increased portion of RME in fuel provokes longer time periods to charge the filter with soot.
Technical Paper

Comparative Studies of Particles Deposited in Diesel Particulate Filters Operating with Biofuel, Diesel Fuel and Fuel Blends

Macroscopic studies and scanning electron microscope (SEM), as well as transmission electron microscope (TEM) research were carried out to investigate the nature and properties of particulate matter (PM) deposited in three diesel particulate filters (DPFs) operating with different fuels: 100% rapeseed methyl ester (RME100), a blend of 20% RME and 80% diesel (RME20), as well as 100% diesel (RME0). The DPFs were catalytically coated with V₂O₅/TiO₂. The PM deposits were either extracted from sectioned DPFs or studied "in situ," as deposited. In the RME100-DPF, the lowest soot and highest ash depositions are found. The higher amount of ash in RME100-DPF, as well as the higher participation of the element Ca in the ash from this filter, indicates that in addition to lubricating oil, the RME fuel contributes also to ash formation. Ash is found accumulating in the plugged inlet channels only in RME100 and as a few tens of μm-thick layer on the channel walls of all three filters.
Technical Paper

DPF Systems for High Sulfur Fuels

During the first decade of diesel particle filter development and deployment in cars, trucks, buses and underground sites, DPF regeneration methods were engineered that were compatible with the then prevalent high sulfur content in the fuel ≻ 2000 ppm. The mainly used methods were burners, electrical heaters, replaceable filters and non-precious metal fuel additives. Low sulfur diesel fuel became only available from 1996 in Sweden, 1998 in Switzerland, and after 2000 everywhere in Europe. Thus, the deployment of precious metal catalytic converters was feasible both as original equipment and retrofitting of in-use engines. The so-called CRT particle filters using PGM-catalysis for providing NO₂ for low temperature regeneration became very successful wherever ULSD was available.