Refine Your Search

Topic

Search Results

Technical Paper

Evaluation of DIC Based Forming Limit Curve Methods at Various Temperatures of Aluminum Alloys for Automotive Applications

2017-03-28
2017-01-0309
Aluminum alloys are increasingly utilized in automotive body panels and crash components to reduce weight. Accurately assessing formability of the sheet metal can reduce design iteration and tooling tryouts to obtain the desired geometry in aluminum stampings. The current ISO forming limit curve (FLC) procedure is a position dependent technique which produces the FLC based on extrapolation at the crack location. As aluminum sheet metal use increases in manufacturing, accurate determination of the forming limits of this material will be necessary prior to production. New time dependent methods using digital imaging correlation (DIC) account for variations in material behavior by continuously collecting strain data through the material necking point. This allows more accurate FLC determination that is necessary for efficient design in the automotive stamping industry.
Technical Paper

Micro-Texture Tailored Friction Modeling and Discrete Application in Drawability Improvement

2010-04-12
2010-01-0982
Friction plays an important role in the deep drawing process. Previous research shows friction condition can be tailored by applying micro-textures on tooling surfaces. A friction model is proposed to reveal the mechanism of altering friction condition by configuring micro-texture. A discrete friction concept is proposed to improve drawability of sheet metal and demonstrates numerically on a non-symmetric geometry drawing process.
Technical Paper

Welding Characteristics in Deformation Resistance Welding

2008-04-14
2008-01-1137
Deformation Resistance Welding (DRW) is a process that employs resistance heating to raise the temperature of the materials being welded to the appropriate forging range, followed by shear deformation which increases the contacting surface area of the materials being welded. Because DRW is a new process, it became desirable to establish variable selection strategies which can be integrated into a production procedure. A factorial design of experiment was used to examine the influence of force, number of pulses, and weld cycles (heating/cooling time ratio) on the DRW process. Welded samples were tensile tested to determine their strength. Once tensile testing was complete, the resulting strengths were observed and compared to corresponding percent heat and percent reduction in thickness. Tensile strengths ranged from 107 kN to 22.2 kN. A relationship between the maximum current and the weld variables was established.
Technical Paper

Springback Prediction Using Combined Hardening Model

2000-10-03
2000-01-2659
The main objective of this paper is to simulate the springback using combined kinematic/isotropic hardening model. Material parameters in the hardening model are identified by an inverse method. Three-point bending test is conducted on 6022-T4 aluminum sheet. Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves is generated with the material parameters found in this way, which can be used with other plastic models. ABAQUS/Standard 5.8, which has the combined isotropic/kinematic hardening model, is used to simulate draw-bend of 6022-T4 series aluminum sheet. Absolute springback angles are predicted very accurately.
Technical Paper

Application of Conductive Heat Resistance Seam Welding for Joining a 7075-T6 Alloy and a 5754 Dissimilar Thickness Combination

1999-09-28
1999-01-3162
Conductive heat resistance seam welding (CHRSEW) is a new process developed at Edison Welding Institute for creating butt joints on aluminum sheet. The process uses conventional resistance seam welding equipment, and takes advantage of steel cover sheets on either side of the intended joint. Resulting joints are fusion in character, and can be manufactured at very high welding speeds (∼ 3 to 4 m/min). In this study, the conductive heat resistance seam welding process was extended to some new applications. These included joining a 7075-T6 alloy, and a dissimilar thickness 1- to 2-mm 5754 configuration. The former is generally considered unweldable by fusion methods, and is of considerable interest for aerospace applications. The latter is representative of a tailor welded blank for automotive applications. Resulting welds were evaluated using metallurgical examinations and mechanical testing.
Technical Paper

Laser Lap Welding of Galvanized Steel with No Gap

1999-09-28
1999-01-3145
Laser welding has long been evaluated as a joining technique for galvanized steels in a lap-joint configuration in the automotive industry. However, a problem associated with the low boiling point of zinc limits the application of the laser process in a lap-joint configuration. Zinc-coatings at the interface of the two coated sheets vaporize during welding and the volume of the zinc vapor expands rapidly. The venting of the zinc vapor from the weld pool causes expulsion of the molten metal during welding and a portion of zinc vapor remains in the weld as porosity after welding. To improve the weld quality of galvanized steel, many efforts have been attempted worldwide, but limited success has been reported. Edison Welding Institute (EWI) investigated the laser weldability of galvanized steel in a lap-joint configuration with no gap using a dual beam laser welding technique.
Technical Paper

Vibration Weldability Study for Painted Plastics

1999-05-10
1999-01-1628
Weldability study has been performed on Polypropylene (PP) and PC/ABS samples to investigate how the paint layer along the weld joint affects the vibration weldability. The plastic used for this study were PP representing semicrystalline thermoplastics and PC/ABS representing amorphous thermoplastics. Both resins were molded to generate sample plaques for the study. Design of Experiment (DOE) studies were initially conducted with unpainted plaques and then repeated with the painted plaques for comparison. Optimal welding parameters were determined through DOE and the maximum weld strength under optimized welding conditions were determined and compared. Following each DOE, a regression analysis, using the weld strength as a response, was performed.
Technical Paper

Staking Design and Process Parameter Study of Hot-Air Cold Staking Process

1999-05-10
1999-01-1629
An experimental evaluation to systematically study a hot air cold stake joining process was conducted with injection molded samples. Twelve material combinations consisting of six stud plate materials were matched with two hole plate materials (GDT 6400 and 18% talc filled PP). Seven stud designs with variations in size and geometry were used for each material combination. A proper heating temperature was first determined by heat characterization trials. Different heating times and stake heights were studied in the staking experiments. Pull tests were conducted to determine the strength of the joints and their failure mode. Results showed that material characteristics, material combinations, and process parameters all could contribute to variations in pull strength and different failure modes.
Technical Paper

Microstructural Characteristics of Die Cast AZ91D and AM60 Magnesium Alloys

1999-03-01
1999-01-0928
Die cast AZ91D and AM60 magnesium alloy components are finding increasing usage in automotive applications. Both hot and cold chamber die cast components of these alloys generally exhibit several common microstructural features, including “skin”, porosity banding, and porosity distributed about the component centerline. Methods for quantitatively characterizing these microstructural features are described and representative values for skin thicknesses, porosity band dimensions and porosity band locations from selected die castings will be presented. The expected influence of these common microstrucutral features on mechanical properties and acceptability of die cast magnesium components for given applications are discussed.
Technical Paper

Recent Developments in Friction Stir Welding

1998-06-02
981875
Friction stir welding (FSW) is a new welding process developed at The Welding Institute in Cambridge, U.K. This process uses a non-consumable rotating third body to generate frictional heat and create forging to facilitate continuous solid-state joints. In this paper, the current state of the art of FSW is discussed. A preliminary description of the process is provided, followed by the results of some relatively simple thermal modeling. The modeling results are used to provide a description of temperature distributions in FSW, as well as illustrate the effects of variations in process conditions. Representative microstructures of FSW on an Al 6061 alloy are then presented. Properties of these friction stir welds are then discussed and compared to those of both the base metal and to comparable GTAW welds. Some discussion is then given to the effects of section thickness on FSW. Examples are given of friction stir welds on aluminum alloys ranging from 2 to 30 mm in thickness.
Technical Paper

Improving Fillet Weld Fatigue Performance by Improving Weld Shape

1998-04-08
981509
The fatigue performance of fillet-welded transverse attachments was compared for several procedure variants for both FCAW and SAW on ½ in. steel plates. Measurements of weld toe shape on adjacent pieces of weld indicated that smoother weld toes, as evidenced by larger weld toe radius, were correlated to improved fatigue performance for both processes. Fatigue tests conducted on 59 and 109 ksi yield strength plates did not show an effect of plate strength. Weld procedures designed to provide smooth toes, such as reduced parameter FCAW beads at horizontal weld toes and flat position FCAW at higher heat inputs, were shown to provide fatigue performances near post-weld improved fillets.
Technical Paper

Welding Residual Stresses in Splicing Heavy Section Shapes

1997-04-07
971585
Welding residual stress is one of the primary factors responsible for cracking at the access hole interface between the flange and web plate of welded heavy W-shapes. During multi-pass welding, cracks can be found in either the flange plate or the web plate, depending upon welding sequence, joint details and access hole size. In this study, an integrated numerical and experimental investigation was conducted to evaluate the effects of welding parameters and joint geometry on the magnitude and distribution of residual stresses in thick-section butt joints. The results provide guidelines for improved design for welding of heavy W-shapes.
Technical Paper

Combine Tractive Devices: Effects on Soil Compaction

1995-09-01
952159
Soil response to differences in tire size and inflation pressure was measured for a JD 9600 combine with 18.4R38 dual tires, 30.5L32 single tires, 68x50.00-32 single tires at 103 and 166 kPa inflation pressure and a John Deere half-track system on two different soils (Kokomo and Crosby) near Urbana, Ohio. A loaded 42.3 m3 grain cart was included on the Kokomo soil for comparative purposes. The Ohio State Soil Physical Properties Measurement System was used to sample and measure the bulk density, air-filled porosity, air permeability and cone penetration resistance between 10 and 50 cm depths. The results for Kokomo soil show the grain cart had the greatest effect with an average decrease in total porosity of 12.90 percent, compared to 7.95%, 6.05%, 4.56%, 3.06%, and 2.04% for singles, tracks, duals, wide overinflated, and wide rated pressure tires, respectively, on the combine.
Technical Paper

IVHS~Ohio: A state initiative

1994-04-17
1994-16-0009
The state of Ohio has recognized the importance and potential impact of Intelligent Vehicle-Highway Systems (IVHS) to its citizens and business enterprises. In response to the identified need, a small group of individuals representing Federal and state government, academia, and the private sector have worked together over the past year to initiate a statewide IVHS effort. This initiative is referred to as IVHS~Ohio. The objective of the effort is to "coordinate and foster a public, private, and academic partnership to make the urban and rural surface transportation system in the state of Ohio significantly safer, more effective, and more efficient by accelerating the identification, development, integration, and deployment of IVHS technologies." A May 1993 symposium was attended by over 220 people from government, academia, and the private sector. The result was a unanimous decision to establish a statewide IVHS program.
Technical Paper

EFFECT OF FIT-UP CONDITIONS WHEN USING CONSTANT CURRENT CONTROL SYSTEMS FOR RESISTANCE SPOT WELDING

1993-03-01
930451
Resistance welding control systems utilizing secondary current feedback receive widespread utilization both in Europe and Japan. However, these types of control systems are only beginning to be used in any extended basis in this country. Currently, two variants of these systems are available; so called “self-teaching” systems, and “learning curve” systems. Either system has been shown to be capable of providing a stable secondary resistance welding current within two cycles. Recent work has indicated, however, that the self-teaching type control systems may be adversely affected by non-optimum set-up conditions, particularly poor fit-up and the introduction of organics (sealers or adhesives) at the faying surface. This work examines the performance of learning curve type constant current control systems under these adverse set-up conditions. Six conditions were selected for study; three degrees of progressively poorer fit-up, with and without an organic sealer.
Technical Paper

An Investigation of the Effect of Post Forging Cooling Rate on the Microstructure and Properties of Microalloyed Steels

1993-03-01
930961
Medium carbon steels have been traditionally used for high strength forging applications. These steels contain several alloying elements like chromium, nickel and molybdenum which enable them to attain excellent hardenability and toughness upon heat treatment (quenching and tempering). Microalloyed (MA) medium carbon forging steels are gaining acceptance as a replacement for the traditional quenched and tempered grades as they do not require post forging heat treatment and hence represent substantial savings in manufacturing costs. Since the chief advantage of MA steels lies in the savings of heat treatment costs, the post-forging cooling rate is one of the primary parameters for controlling microstructure and toughness of the forged part. This paper investigates the effect of different cooling rates on the microstructure and mechanical properties of MA steels. Experiments were conducted by cooling test billets in different media.
Technical Paper

Effect of Forging Parameters on the Microstructure and Properties of Medium Carbon Microalloyed Steels

1993-03-01
930960
In recent years, efforts at reducing manufacturing costs for moderate to high strength steel components has provided a major driving force for the development, evaluation and application of high strength low alloy (HSLA) or microalloyed (MA) steels with ferrite-pearlite microstructure. In order to improve or control the final properties of a part forged from MA steels, the effects of thermo-mechanical processing on final properties need to be investigated. Isothermal upset tests were conducted, on two MA steels, TMS-80R (Vanadium MA steel) and TMS-80R+Ti (Titanium modified Vanadium MA steel). The flow behavior as well as preliminary relationships between processing conditions and microstructure were established for these two steels. Further, forging trials were conducted at a forging facility to obtain relationships between processing conditions and mechanical properties.
Technical Paper

Empirical-Numerical Simulation Technique for Improving the Quality of Rolled Rods by Roll Pass Design

1992-02-01
920783
Improper roll pass designs can lead to either underfill which results in the formation of hairline cracks on the surface of the finished bars or overfill which results in roll overloading and the formation of fins. Therefore to reduce downtime, and improve yield and quality, it becomes important to design an acceptable roll pass in reasonable time. This paper presents a methodology for roll pass design which uses a three dimensional finite element technique along with an empirical procedure to arrive at an iterative scheme for reducing the number of passes and improving metal flow in the passes. This methodology is applied to improving an existing seven pass square - to - round rolling sequence, resulting in the reduction of the number of passes and improved distributions of effective strains in the rolled product.
Technical Paper

Effects of Prepulse Resistance Spot Welding Schedules on the Weldability Characteristics of Galvanized Steel

1990-02-01
900740
Many automotive production plants are using various prepulse schedules for resistance spot welding thin gauge galvanized steel. The claimed reasons are that wider current range and longer electrode life are obtainable in comparison to the conventional schedule. However, data to support this are not available. The objective of this program was to determine the effect of prepulsation on spot weldability of galvanized steel. In this work, several prepulse resistance spot welding schedules were evaluated in two full factorial experiments. The effect of the number of prepulse cycles, the prepulse heat level and the effect of cool time were studied in detail. Weldability was evaluated using an electrode life test procedure in which the current range was periodically examined over the life of the electrodes. Generally, the results indicate that prepulsation has a negative effect on the resistance spot weldability of thin gauge galvanized steel.
Technical Paper

Self-Tuning Optimal Control of an Active Suspension

1989-11-01
892485
The objective of this paper is to develop a self-tuning optimal control of an active suspension. An active suspension composed of an identifier and a controller is proposed in this paper. Although control strategies on active (or semi-active) suspensions have been investigated during the past few decades, some problems are not well understood yet. One of them arising from the ride control of an active suspension is that when the weight and the moments of inertia of the sprung mass are varied, the feedback gains of the controller should vary with the variation of parameters accordingly. Therefore, the identifier is proposed before the controller is designed. In the real situations, the parameter variation may occur when loadings on vehicles vary - either from passengers or payloads, especially, in the case of loading on a truck. An identification structure using parallel model reference adaptive system (MRAS) is proposed to identify the true parameters.
X