Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Correlating Flame Location and Ignition Delay in Partially Premixed Combustion

2012-09-10
2012-01-1579
Controlling ignition delay is the key to successfully enable partially premixed combustion in diesel engines. This paper presents experimental results of partially premixed combustion in an optically accessible engine, using primary reference fuels in combination with artificial exhaust gas recirculation. By changing the fuel composition and oxygen concentration, the ignition delay is changed. To determine the position of the flame front, high-speed visualization of OH-chemiluminescence is used, enabling a cycle-resolved analysis of OH formation. A clear correlation is observed between ignition delay and flame location. The mixing of fuel and air during the ignition delay period defines the local equivalence ratio, which is estimated based on a spherical combustion volume for each spray. The corresponding emission measurements using fast-response analyzers of CO, HC and NOX confirm the decrease in local equivalence ratio as a function of ignition delay.
Technical Paper

Emission Performance of Lignin-Derived Cyclic Oxygenates in a Heavy-Duty Diesel Engine

2012-04-16
2012-01-1056
In earlier research, a new class of bio-fuels, so-called cyclic oxygenates, was reported to have a favorable impact on the soot-NOx trade-off experience in diesel engines. In this paper, the soot-NOx trade-off is compared for two types of cyclic oxygenates. 2-phenyl ethanol has an aromatic and cyclohexane ethanol a saturated or aliphatic ring structure. Accordingly, the research is focused on the effect of aromaticity on the aforementioned emissions trade-off. This research is relevant because, starting from lignin, a biomass component with a complex poly-aromatic structure, the production of 2-phenyl ethanol requires less hydrogen and can therefore be produced at lower cost than is the case for cyclohexane ethanol.
Technical Paper

Gasoline-Diesel Dual Fuel: Effect of Injection Timing and Fuel Balance

2011-12-15
2011-01-2437
Recently, some studies have shown high efficiencies using controlled auto-ignition by blending gasoline and diesel to a desired reactivity. This concept has been shown to give high efficiency and, because of the largely premixed charge, low emission levels. The origin of this high efficiency, however, has only partly been explained. Part of it was attributed to a lower temperature combustion, originating in lower heat losses. Another part of the gain was attributed to a faster, more Otto-like (i.e. constant volume) combustion. Since the concept was mainly demonstrated on one single test setup so far, an experimental study has been performed to reproduce these results and gain more insight into their origin. Therefore one cylinder of a heavy duty test engine has been equipped with an intake port gasoline injection system, primarily to investigate the effects of the balance between the two fuels, and the timing of the diesel injection.
Journal Article

Direct Injection of Diesel-Butane Blends in a Heavy Duty Engine

2011-12-06
2011-01-2400
Increasing fuel prices keep bringing attention to alternative, cheaper fuels. Liquefied Petroleum Gas (LPG) has been well known for decades as an alternative fuel for spark ignition (SI) passenger cars. More recently, aftermarket LPG systems were also introduced to Heavy Duty transport vehicles. These (port fuel) systems either vaporize the liquid fuel and then mix it with intake air, or inject fuel into the engine's intake ports. While this concept offers significant fuel cost reductions, for aftermarket certification and large-scale OEM use some concerns are present. Unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions are known to be high because of premixed charge getting trapped into crevices and possibly being blown through during valve-overlap. Apart from the higher emission levels, this also limits fuel efficiency and therefore cost savings.
Journal Article

Waste Energy Driven Air Conditioning System (WEDACS)

2009-09-13
2009-24-0063
In the port injected Spark Ignition (SI) engine, the single greatest part load efficiency reducing factor are energy losses over the throttle valve. The need for this throttle valve arises from the fact that engine power is controlled by the amount of air in the cylinders, since combustion occurs stoichiometrically in this type of engine. In WEDACS (Waste Energy Driven Air Conditioning System), a technology patented by the Eindhoven University of Technology, the throttle valve is replaced by a turbine-generator combination. The turbine is used to control engine power. Throttling losses are recovered by the turbine and converted to electrical energy. Additionally, when air expands in the turbine, its temperature decreases and it can be used to cool air conditioning fluid. As a result, load of the alternator and air conditioning compressor on the engine is decreased or even eliminated, which increases overall engine efficiency.
Journal Article

Porous Fuel Air Mixing Enhancing Nozzle (PFAMEN)

2009-09-13
2009-24-0028
One of the challenges with conventional diesel engines is the emission of soot. To reduce soot emission whilst maintaining fuel efficiency, an important pathway is to improve the fuel-air mixing process. This can be achieved by creating small droplets in order to enhance evaporation. Furthermore, the distribution of the droplets in the combustion chamber should be optimized, making optimal use of in-cylinder air. To deal with these requirements a new type of injector is proposed, which has a porous nozzle tip with pore diameters between 1 and 50 μm. First, because of the small pore diameters the droplets will also be small. From literature it is known that (almost) no soot is formed when orifice diameters are smaller than 50 μm. Second, the configuration of the nozzle can be chosen such that the whole cylinder can be filled with fine droplets (i.e., spray angle nearly 180°).
X